The true statement about Sam’s conjecture is that the conjecture is not correct
<h3>How to determine if Sam’s conjecture is correct or not?</h3>
Sam’s conjecture is given as:
For x ≤ - 2
It is true that x^5 + 7 > x^3.
The inequality x ≤ - 2 means that the highest value of x is -2
Assume the value of x is -2, then we have:
(-2)^5 + 7 > (-2)^3
Evaluate the exponents
-32 + 7 > -8
Evaluate the sum
-25 > -8
The above inequality is false because -8 is greater than -25 i.e. -8 > -25 or -25 < -8
Hence, the true statement about Sam’s conjecture is that the conjecture is not correct
Read more about conjectures at
brainly.com/question/20409479
#SPJ1
Answer:
Function A has the greater initial value because the initial value for Function A is 6 and the initial value for Function B is 3.
Step-by-step explanation:
✔️Function A:
Initial value = y-intercept (b)
y-intercept is the value of y, when the corresponding value of x = 0
From the table, y = 6 when x = 0.
The y-intercept of function A = 6
Therefore, initial value for Function A = 6
✔️Function B:
y = 4x + 3 is given in the slope-intercept form, y = mx + b.
b = y-intercept = initial value.
Therefore
Initial value for Function B = 3
✔️Function A has the greater initial value because the initial value for Function A is 6 and the initial value for Function B is 3.
Answer:
622.27
Step-by-step explanation:
- $87.45 + (- $24.76) + (-17.29) = $-129.5
$143.87 + $348.90 = $492.77
492.77 - (-129.5) = 622.27
Answer: 
Step-by-step explanation:
Let be "x" the time in minutes a 150-pound person must walk at 4 mph to use at least 190 calories.
The amount of calories that a 150-pound person uses in 1 minute when walking at a speed of 4 mph is:

Therefore, knowing this, we can write the following proportion:

Finally, we must solve for "x" in order to find its value.
Multiplying both sides of the equation by 190, we get this result:

The vendor has to sell 88 gingerbread houses to earn a profit of $665.60 and there is no chance that the vendor will earn $1500.
Given an equation showing profits of A Christmas vendor as
P=-0.1
+30g-1200.
We have to find the number of gingerbread houses that the vendor needs to sell in order to earn profit of $665.60 and $1500.
To find the number of gingerbread houses we have to put P=665.60 in the equation given which shows the profit earned by vendor.
665.60=-0.1
+30g-1200
0.1
-30g+1200+665.60=0
0.1
-30g+1865.60=0
Divide the above equation by 0.1.
-300g+18656=0
Solving for g we get,
g=[300±
]/2*1
g=[300±![\sqrt{90000-74624}]/2](https://tex.z-dn.net/?f=%5Csqrt%7B90000-74624%7D%5D%2F2)
g=[300±
]/2
g=(300±124)/2
g=(300+124)/2 , g=(300-124)/2
g=424/2, g=176/2
g=212,88
Because 212 is much greater than 88 so vendor prefers to choose selling of 88 gingerbread houses.
Put the value of P=1500 in equation P=-0.1
+30g-1200.
-0.1
+30g-1200=1500
0.1
-30g+1500+1200=0
0.1
-30g+2700=0
Dividing equation by 0.1.
-300g+27000=0
Solving the equation for finding value of g.
g=[300±
]/2*1
=[300±![\sqrt{90000-108000}] /2](https://tex.z-dn.net/?f=%5Csqrt%7B90000-108000%7D%5D%20%2F2)
=[300±
]/2
Because
comes out with an imaginary number so it cannot be solved for the number of gingerbread houses.
Hence the vendor has to sell 88 gingerbread houses to earn a profit of $665.60 and there is no chance that the vendor will earn $1500.
Learn more about equation at brainly.com/question/2972832
#SPJ1