"Anti-Lock" brake systems release the brakes momentarily when wheel speed sensors indicate a locked wheel during braking and traction.
<u>Explanation:</u>
The safety anti-skid braking system is known as "anti-lock braking system" having huge application on land vehicles like one, two and multiple wheeler vehicles and aircraft. During braking, it avoids wheels to get locked by building tractive contacts to the road's surface.
This seems to be an automated system work on the principles of techniques - threshold and cadence braking. The wheel velocity sensors are utilized by ABS to find whether one or more than one wheels chose to get lock while braking.
Answer:
(a) 43.2 kC
(b) 0.012V kWh
(c) 0.108V cents
Explanation:
<u>Given:</u>
- i = current flow = 3 A
- t = time interval for which the current flow =

- V = terminal voltage of the battery
- R = rate of energy = 9 cents/kWh
<u>Assume:</u>
- Q = charge transported as a result of charging
- E = energy expended
- C = cost of charging
Part (a):
We know that the charge flow rate is the electric current flow through a wire.

Hence, 43.2 kC of charge is transported as a result of charging.
Part (b):
We know the electrical energy dissipated due to current flow across a voltage drop for a time interval is given by:

Hence, 0.012V kWh is expended in charging the battery.
Part (c):
We know that the energy cost is equal to the product of energy expended and the rate of energy.

Hence, 0.108V cents is the charging cost of the battery.
Answer:
tire marks are due to the increase in thermal energy
Explanation:
When a tire is spinning at a given speed when the brakes are applied hard, the friction between the tire's particulate and the ground surface is high enough that some tire particles are transferred to the ground.
This is reflected in the heat transfer from the tire to the ground.
Consequently, tire marks are due to the increase in thermal energy and the change in the friction force of the tire.