In solid and liquid the matter can occupy the 90 in³ and 157.1 in³ volume.
The matter in gaseous state can be expanded to occupy the volumes of the container.
<h3>
Volume of each of the container</h3>
The volume of each of the container is calculated as follows;
<h3>Volume of the rectangular container</h3>
V = 5 in x 6 in x 3 in
V = 90 in³
<h3>Volume of the cylindrical container</h3>
V = πr²h
V = (π)(2.5 in)²(8 in)
V = 157.1 in³
<h3>Volume of the matter</h3>
Vm = 3 in x 4 in x 5 in
Vm = 60 in³
<h3>Matter in solid and liquid state</h3>
Matter has fixed volume in solid and liquid state.
In solid and liquid the matter can occupy the 90 in³ and 157.1 in³ volume.
<h3>Matter in gaseous state</h3>
Matter has no definite volume in gaseous state.
The matter in gaseous state can be expanded to occupy the volumes of the container.
Learn more about states of matter here:
#SPJ1
Answer:
huh,? can you explain the question more please
Answer:
20 m
Explanation:
Initial potential energy = final kinetic energy
mgh = 1/2 mv²
gh = 1/2 v²
h = v² / (2g)
Given v = 20 m/s and g = 10 m/s²:
h = (20 m/s)² / (2 × 10 m/s²)
h = 20 m
The answer is A because for it to shift to a blue violet it has to increase in temperature