Answer:

Step-by-step explanation:
<u>Linear Modeling</u>
It consist is setting up a linear relationship between two variables, given some experimental data. Only 2 points are needed to set up the equation of a line, but if more than 2 points are used, then the result should use statistical approaches like linear regression to find the best-fit line.
For the question at hand, Marty practices his piano lessons 11 minutes the week #1. It provides the first point (1,11). He practices 25 minutes per day on the third week. It gives us another point (3,25). This is enough to find the equation of a line. The general formula for a line, having two points (m1,w1) (m2,w2) is

Let's plug in our values

Simplifying:


ANSWER
The general solution is
, where
is an integer
<u>EXPLANATION</u>
In order to solve the linear congruence;

We need to determine the inverse of
(which is a Bézout coefficient for 33).
To do that we must first use the Euclidean Algorithm to verify the existence of the inverse by showing that;

Now, here we go;



The greatest common divisor is the last remainder before the remainder of zero.
Hence, the
.
We now express this gcd of 1 as a linear combination of 33 and 280.
We can achieve this by making all the non zero remainders the subject and making a backward substitution.


Equation (2) in equation (1) gives,



The above linear combination tells us that
is the inverse of
.
Now we multiply both sides of our congruence relation by
.

This implies that;

.
Since this is modulo, the solution is not unique because any integral addition or subtraction of the modulo (280 in this case) produces an equivalent solution.
Therefore the general solution is,
, where
is an integer
Answer:

Step-by-step explanation:

Answer:
57.8333333333
Step-by-step explanation:
694/12=57.8333333333