The outdoor temperature, also known as the ambient temperature, is a measure of the amount of heat in the environment and this depends on the kind of environment.
<h3>Temperature</h3>
The outdoor temperature around here is about 33
.
The temperature in the tropical area, where this area belongs, varies between 27 to 35
with an annual average of about 28
.
In order words, tropical regions are generally warm, unlike temperate regions.
Tropical regions also have two distinct seasons, the rainy and the dry seasons. This is unlike temperate regions that have summer, spring, winter, and autumn.
More on temperature can be found here: brainly.com/question/15267055
Answer:
the pH of HCOOH solution is 2.33
Explanation:
The ionization equation for the given acid is written as:

Let's say the initial concentration of the acid is c and the change in concentration x.
Then, equilibrium concentration of acid = (c-x)
and the equilibrium concentration for each of the product would be x
Equilibrium expression for the above equation would be:
![\Ka= \frac{[H^+][HCOO^-]}{[HCOOH]}](https://tex.z-dn.net/?f=%5CKa%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BHCOO%5E-%5D%7D%7B%5BHCOOH%5D%7D)

From given info, equilibrium concentration of the acid is 0.12
So, (c-x) = 0.12
hence,

Let's solve this for x. Multiply both sides by 0.12

taking square root to both sides:

Now, we have got the concentration of ![[H^+] .](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20.)
![[H^+] = 0.00465 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%200.00465%20M)
We know that, ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
pH = -log(0.00465)
pH = 2.33
Hence, the pH of HCOOH solution is 2.33.
Answer:
Pb(NO₃)₂ (aq) + 2NaCl (aq) → PbCl₂ (s) ↓ + 2NaNO₃ (aq)
Explanation:
The reactants are:
Lead(II) nitrate → Pb(NO₃)₂ (aq)
Sodium chloride → NaCl (aq)
The products are:
Lead(II) chloride → PbCl₂ (s)
Sodium nitrate → NaNO₃ (aq)
Salts form nitrate are soluble. The chloride makes a precipitate with the Pb²⁺. The chemical equation for this reaction is:
Pb(NO₃)₂ (aq) + 2NaCl (aq) → PbCl₂ (s) ↓ + 2NaNO₃ (aq)
The reaction releases heat and gives net energy to its surroundings. The energy needed to initiate the reaction is less than the energy released.
We can use evaporation and as well filtration to separate solid to liquid.