Bond number
The characteristic of reactions that depends on valence electrons is the bond type.
In chemistry, a chemical bond could be;
Ionic
Covalent
The type of bond formed depends on the number of valence electrons present. When there are few valence electrons on an atom, it mostly forms ionic bonds.
When there are more electrons on an atoms, it mostly forms covalent bonds and the electrons between the atoms are shared.
All the layers should be kept until the experiment is complete.
<h3>What is extraction?</h3>
In chemistry, solvent extraction is accomplished by adding a sample containing the substance to be separated into a system of two solvents, an aqueous layer and an organic layer.
It is important to note that all the layers should be kept until the experiment is complete. No layer ought to be discarded before the work is completed.
Learn more about solvent extraction:brainly.com/question/11041092
The correct answer of the given question above would be a PICTOGRAM. OSHA’s required pictograms must be in the shape of a square set at a point and
include a black hazard symbol on a white background with a red frame sufficiently wide enough to
be clearly visible.
24.6 ℃
<h3>Explanation</h3>
Hydrochloric acid and sodium hydroxide reacts by the following equation:

which is equivalent to

The question states that the second equation has an enthalpy, or "heat", of neutralization of
. Thus the combination of every mole of hydrogen ions and hydroxide ions in solution would produce
or
of energy.
500 milliliter of a 0.50 mol per liter "M" solution contains 0.25 moles of the solute. There are thus 0.25 moles of hydrogen ions and hydroxide ions in the two 0.500 milliliter solutions, respectively. They would combine to release
of energy.
Both the solution and the calorimeter absorb energy released in this neutralization reaction. Their temperature change is dependent on the heat capacity <em>C</em> of the two objects, combined.
The question has given the heat capacity of the calorimeter directly.
The heat capacity (the one without mass in the unit) of water is to be calculated from its mass and <em>specific</em> heat.
The calorimeter contains 1.00 liters or
of the 1.0 gram per milliliter solution. Accordingly, it would have a mass of
.
The solution has a specific heat of
. The solution thus have a heat capacity of
. Note that one degree Kelvins K is equivalent to one degree celsius ℃ in temperature change measurements.
The calorimeter-solution system thus has a heat capacity of
, meaning that its temperature would rise by 1 degree celsius on the absorption of 4.634 × 10³ joules of energy.
are available from the reaction. Thus, the temperature of the system shall have risen by 3.03 degrees celsius to 24.6 degrees celsius by the end of the reaction.