![y=2x+1\\\\\dfrac{dy}{dt}=2\dfrac{dx}{dt}](https://tex.z-dn.net/?f=y%3D2x%2B1%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdt%7D%3D2%5Cdfrac%7Bdx%7D%7Bdt%7D)
(a) For dx/dt=6, dy/dt = 2·6 = 12
(b) For dy/dt=2, 2 = 2·dx/dt ⇒ dx/dt = 1
_____
The value of x is irrelevant for this question.
=====
If your function is 2^x +1 or 2^(x +1), it needs to be written as such. The answer above applies to the function given.
<span>b.<span>Olya could skip a month or two paying for her school loan and
put the money towards her credit card debt.</span></span>
Answer:
x = 7 and y = −2
(7, -2)
Step-by-step explanation:
x = 1 - 3y
3x + 3y = 15
Substitute −3y + 1 for x in 3x + 3y = 15:
3(1 - 3y) + 3y = 15
3 - 9y + 3y = 15
3 - 6y = 15
-3 -3
-6y = 12
/-6 /-6
y = -2
Now we solve for x. Substitute −2 for y in x = −3y + 1:
x = 1 - 3y
x = 1 + (-3)(-2)
x = 1 + 6
x = 7
Now we check our solution.
x = 1 - 3y
7 = 1 + (-3)(-2)
7 = 7 ✅
3x + 3y = 15
3(7) + 3(-2) = 15
21 - 6 = 15
15 = 15 ✅
5.14- 3.89 = 1.25 1.25/ 0.25 =5 m=5 I think, you might want to check it :)