Answer:
a) ![p(X= 2) = 0.261](https://tex.z-dn.net/?f=p%28X%3D%202%29%20%3D%200.261)
b) P(x>2) = 0.566
c) P(2<x<5) = 0.334
Step-by-step explanation:
Given 24% of U.S. adults say they are more likely to make purchases during a sales tax holiday
Probability 0f U.S. adults say they are more likely to make purchases during a sales tax holiday (p) = 0.24
n = 10
By using Poisson distribution
mean number of make purchases during a sales tax holiday
λ = np = 10 X 0.24 = 2.4
a)
The probability of getting exactly '2'
The probability ![p(X= 2) = e^{-\alpha } \frac{\alpha^r }{r! }](https://tex.z-dn.net/?f=p%28X%3D%202%29%20%3D%20e%5E%7B-%5Calpha%20%7D%20%5Cfrac%7B%5Calpha%5Er%20%7D%7Br%21%20%7D)
![p(X= 2) = e^{2.4 } \frac{\(2.4)^2 }{2! }](https://tex.z-dn.net/?f=p%28X%3D%202%29%20%3D%20e%5E%7B2.4%20%7D%20%5Cfrac%7B%5C%282.4%29%5E2%20%7D%7B2%21%20%7D)
![p(X= 2) = e^{2.4 } \frac{\(2.4)^2 }{2! }= 0.261](https://tex.z-dn.net/?f=p%28X%3D%202%29%20%3D%20e%5E%7B2.4%20%7D%20%5Cfrac%7B%5C%282.4%29%5E2%20%7D%7B2%21%20%7D%3D%200.261)
b) The probability of getting more than '2'
![P(X>2) = 1- {p(x=0)+p(x=1)+p(x=2)}](https://tex.z-dn.net/?f=P%28X%3E2%29%20%3D%201-%20%7Bp%28x%3D0%29%2Bp%28x%3D1%29%2Bp%28x%3D2%29%7D)
![= e^{-2.4 } \frac{(2.4)\^0 }{0! }+ e^{-2.4 } \frac{(2.4)\^1 }{1!}+e^{-2.4 } \frac{(2.4)\^2 }{2!}](https://tex.z-dn.net/?f=%3D%20e%5E%7B-2.4%20%7D%20%5Cfrac%7B%282.4%29%5C%5E0%20%7D%7B0%21%20%7D%2B%20e%5E%7B-2.4%20%7D%20%5Cfrac%7B%282.4%29%5C%5E1%20%7D%7B1%21%7D%2Be%5E%7B-2.4%20%7D%20%5Cfrac%7B%282.4%29%5C%5E2%20%7D%7B2%21%7D)
= 0.090 + 0.2177+0.261 = 0.566
P(x>2) = 0.566
c) The probability of getting between two and five
P( 2<x<5) = P(x=3)+p(x=4) =![= e^{-2.4 } \frac{(2.4)\^3 }{3! }+ e^{-2.4 } \frac{(2.4)\^4 }{4!}+](https://tex.z-dn.net/?f=%3D%20e%5E%7B-2.4%20%7D%20%5Cfrac%7B%282.4%29%5C%5E3%20%7D%7B3%21%20%7D%2B%20e%5E%7B-2.4%20%7D%20%5Cfrac%7B%282.4%29%5C%5E4%20%7D%7B4%21%7D%2B)
P(2<x<5) = 0.2090 + 0.125 = 0.334