<span>The
answer is energy is transferred from an exergonic process to an endergonic one.
That is what energy coupling is. The exergonic process will release free energy
and this free energy will be absorbed by the endergonic process. It can also drive the endergonic process. </span>
Answer:
Crop Rotation: Rotating in high-residue crops — such as corn, hay, and small grain — can reduce erosion as the layer of residue protects topsoil from being carried away by wind and water. Conservation Tillage: Conventional tillage produces a smooth surface that leaves soil vulnerable to erosion.
please mark me as brainliest
The question is incomplete. The complete question is:
Question: What is the expected percent change in the DNA content of a typical eukaryotic cell as it progresses through the cell cycle from the start of the G1 phase to the end of the G2 phase
a. -100%
b. -50%
c. +50%
d. +100%
Answer:
d. +100%
Explanation:
S phase comes between G1 and G2 phases of the interphase of a cell cycle. S phase of interphase includes replication of DNA. The process of DNA replication doubles the amount of DNA present in the cell. The newly synthesized DNA is accommodated in the sister chromatids of chromosomes. Therefore, a cell with 2C DNA in the G1 phase would have 4C DNA at the end of the G2 phase. So, there is a +100% increase in the DNA content of a cell as it proceeds from G1 to the end of the G2 phase.
<span>The structure of the feet and legs varies greatly among frog species, depending in part on whether they live primarily on the ground, in water, in trees or in burrows. Frogs must be able to move quickly through their environment to catch prey and escape predators, and numerous adaptations help them to do so. Most frogs are either proficient at jumping or are descended from ancestors that were, with much of the musculoskeletal morphology modified for this purpose. The tibia, fibula, and tarsals have been fused into a single, strong bone, as have the radius and ulna in the fore limbs (which must absorb the impact on landing). The metatarsals have become elongated to add to the leg length and allow the frog to push against the ground for a longer period on take-off. The illium has elongated and formed a mobile joint with the sacrum which, in specialist jumpers such as ranids and hylids, functions as an additional limb joint to further power the leaps. The tail vertebrae have fused into a urostyle which is retracted inside the pelvis. This enables the force to be transferred from the legs to the body during a leap </span>
<span>The muscular system has been similarly modified. The hind limbs of ancestral frogs presumably contained pairs of muscles which would act in opposition (one muscle to flex the knee, a different muscle to extend it), as is seen in most other limbed animals. However, in modern frogs, almost all muscles have been modified to contribute to the action of jumping, with only a few small muscles remaining to bring the limb back to the starting position and maintain posture. The muscles have also been greatly enlarged, with the main leg muscles accounting for over 17% of the total mass of the frog.</span>