Answer:
Area of shaded region=41 square feet
Area of non shaded region= 87 square feet
Step-by-step explanation:
As, Shaded area is made of different shapes including two rectangles and one triangle
So,
Area of shaded region,

Area of non shaded region=total area of rectangular region-Shaded region

I think its -1 i not very smart so it probably wrong
Ahh yes, negative exponents always give us a scare once and a while. All the negative means is to flip the position of its base. For instance, if x has a negative exponent and x in the denominator, all you would have to do is move x to the numerator with the same power (except it's no longer negative). Before we substitute x and all the other variables which the values given, let's eliminate the negatives first.
After flipping positions/eliminating the negative exponents it should look like this:

which simplifies to

now that everything is simplified, and all negative exponents are eliminated we can substitute x with 2, and y with (-4).

which simplifies to

Final Answer: - \frac{1}{32} [/tex]
First picture)
I: 5x+2y=-4
II: -3x+2y=12
add I+(-1*II):
5x+2y-(-3x+2y)=-4-12
8x=-16
x=-2
insert x=-2 into I:
5*(-2)+2y=-4
-10+2y=-4
2y=6
y=3
(-2,3)
question 6)
I: totalcost=115=3*childs+5*adults
II: 33=adults+childs
33-adults=childs
insert childs into I:
115=3*(33-adults)+5*adults
115=99-3*adults+5*adults
16=2*adults
8=adults
insert adults into II:
33-8=childs
25=childs
so it's the last option
question 7)
a) y<6 and y>2 can also be written as 2<y<6, so solution 3 exist for example
b) y>6 and y>2 can also be written as 2<6<y, so solution 7 exist for example
c) y<6 and y<2 inverse of b: y<2<6, so for example 1
d) y>6 and y<2: y<2<6<y, this is impossible as y can be only either bigger or smaller than 2 or 6
so it's the last option
question 8)
I: x+y=12
II: x-y=6
subtract: I-II:
x+y-(x-y)=12-6
2y=6
y=3
insert y into I:
x+3=12
x=9
(9,3)
question 9)
I: x+y=6
II: x=y+5
if you take the x=y+5 definition of II and substitute it into I:
(y+5)+y=6
which is the second option :)