Answer:
DESCULPA MAS EU NÃO ENTENDI
Answer:
Yes. YES yes yes. Unless you are in Australia or something.
Answer:
Please check explanation for answer
Explanation:
Here, we are concerned with stating the advantages and disadvantages of using a 6 tube passes instead of a 2 tube passes of the same diameter:
<u>Advantages</u>
* By using a 6 tube passes diameter, we are increasing the surface area of the heat transfer surface
* As a result of increasing the heat transfer surface area, the rate of heat transfer automatically increases too
Thus, from the above, we can conclude that the heat transfer rate of a 6 tube passes is higher than that of a 2 tube passes of the same diameter.
<u>Disadvantages</u>
* They are larger in size and in weight when compared to a 2 tube passes of the same diameter and therefore does not find use in applications where space conservation is quite necessary.
* They are more expensive than the 2 tube passes of the same diameter and thus are primarily undesirable in terms of manufacturing costs
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²