By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
<h3>How to determine the differential of a one-variable function</h3>
Differentials represent the <em>instantaneous</em> change of a variable. As the given function has only one variable, the differential can be found by using <em>ordinary</em> derivatives. It follows:
dy = y'(x) · dx (1)
If we know that y = (1/x) · sin 2x, x = π and dx = 0.25, then the differential to be evaluated is:





By applying the concepts of differential and derivative, the differential for y = (1/x) · sin 2x and evaluated at x = π and dx = 0.25 is equal to 1/2π.
To learn more on differentials: brainly.com/question/24062595
#SPJ1
Search engines use specific algorithms based on their data size and structure to produce a return value.
Linear Search Algorithm. ...
Binary Search Algorithm. ...
Relevancy. ...
Individual Factors. ...
Off-Page Factors.
Answer:
Check the explanation
Explanation:
The Total pressure is the overall of fixed or static pressure p, the dynamic pressure q, as well as gravitational head. Total pressure can also be referred to as the measure of the overall energy of the airstream, and is the same to static pressure plus velocity pressure.
kindly check the step by step solution in the attached image below to Determine the (P0/Pt) values corresponding to the 1st, 2nd, and 3rd critical points.
Answer:
A selective surface with large absorption for solar radiation and high reflectance for thermal infrared radiation was produced by use of surface oxidation of stainless steel. The surfaces were studied for use with concentrated light in a solar power plant at temperatures of 400°C and higher.
In order to investigate the relation between surface treatment and optical properties, stainless steels (AISI 304 and 430) which were submitted to different chemical and mechanical surface treatments, were used. To increase the spectral selectivity, these surfaces were treated in air and in vacuum at different temperatures and times. The optical properties of these films were investigated. Visual and infrared spectral absorptances were measured at room temperature. The thermal hemispherical emittance and absorptance were obtained by a calorimetric method at 200°C. It was noticed that these chemically and mechanically treated stainless steel surfaces have good spectral properties without further oxidations. This is very important for high temperature uses. The best values are found for samples 7 and 8 under vacuum and air. These two samples with mechanically ground surfaces retained their selectivity and specularity after several hours oxidation. One can conclude that the surface ground treatment confers good selectivity on the steel surfaces for use in concentrating solar collectors with a working temperature of 500°C.
Sample surfaces were subjected to long temperature ageing tests in order to gain some idea of the thermal stability of the surfaces. The results promise better-performing surface and the production of durable selective finishes at, possibly, lower cost than competing processes.
Explanation: