Answer:
The maximum length is 3.897×10^-5 mm
Explanation:
Extension = surface energy/elastic modulus
surface energy = 1.05 J/m^2
elastic modulus = 198 GPa = 198×10^9 Pa
Extension = 1.05/198×10^9 = 5.3×10^-12 m
Strain = stress/elastic modulus = 27×10^6/198×10^9 = 1.36×10^-4
Length = extension/strain = 5.3×10^-12/1.36×10^-4 = 3.897×10^-8 m = 3.897×10^-8 × 1000 = 3.897×10^-5 mm
Answer:
peak flow and any engineering considerations related thereto
Explanation:
It should be no surprise that a peak flow meter will report peak flow, sometimes with important maximum-value, time-constant, or bandwidth limitations. There are many engineering issues related to flow rates. A peak flow meter can allow you to assess those issues with respect to the flows actually encountered.
Peak flow can allow you to assess adequacy of flow and whether there may be blockages or impediments to flow that reduce peak levels below expected values. An appropriate peak flow meter can help you assess the length of time that peak flow can be maintained, and whether that delivers sufficient volume.
It can also allow you to assess whether appropriate accommodation is made for unexpectedly high flow rates. (Are buffers or overflow tanks of sufficient size? Is there adequate protection against possible erosion? Is there adequate support where flow changes direction?)
Answer:
Hello, I'm good. Thank you for asking
Answer:
STEP1 Cut to Rough Length
STEP2 Cut to Rough Width
STEP 3 Face-Jointing
HOPE THAT HELPSSS!!!
Answer: c. The Professional Engineers Act and Board Rules
Explanation:
The reference source may be consulted to answer questions regarding the Professional Engineers Act is the The Professional Engineers Act and Board Rules.
The Professional Engineers Act and Board Rules is an Act that was established in order to regulate the qualifications for professional engineered, register them and also make sure that their conducts and behavior are looked into.