1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
11

Find the general solution of the equationa) Tan A = 1/√3​

Engineering
1 answer:
castortr0y [4]3 years ago
7 0

Given :

tan \ A = \dfrac{1}{\sqrt{3}}

To Find :

The general solution of the given equation.

Solution :

We know, tan\ 30^o = \dfrac{1}{\sqrt{3}}

Comparing it with given equation, we get :

A = \dfrac{\pi}{6}

General solution is given by :

A = n\pi  + \dfrac{\pi}{6} where n ∈ Z ( integers )

Hence, this is the required solution.

You might be interested in
Please answer fast. With full step by step solution.​
lina2011 [118]

Let <em>f(z)</em> = (4<em>z </em>² + 2<em>z</em>) / (2<em>z </em>² - 3<em>z</em> + 1).

First, carry out the division:

<em>f(z)</em> = 2 + (8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1)

Observe that

2<em>z </em>² - 3<em>z</em> + 1 = (2<em>z</em> - 1) (<em>z</em> - 1)

so you can separate the rational part of <em>f(z)</em> into partial fractions. We have

(8<em>z</em> - 2) / (2<em>z </em>² - 3<em>z</em> + 1) = <em>a</em> / (2<em>z</em> - 1) + <em>b</em> / (<em>z</em> - 1)

8<em>z</em> - 2 = <em>a</em> (<em>z</em> - 1) + <em>b</em> (2<em>z</em> - 1)

8<em>z</em> - 2 = (<em>a</em> + 2<em>b</em>) <em>z</em> - (<em>a</em> + <em>b</em>)

so that <em>a</em> + 2<em>b</em> = 8 and <em>a</em> + <em>b</em> = 2, yielding <em>a</em> = -4 and <em>b</em> = 6.

So we have

<em>f(z)</em> = 2 - 4 / (2<em>z</em> - 1) + 6 / (<em>z</em> - 1)

or

<em>f(z)</em> = 2 - (2/<em>z</em>) (1 / (1 - 1/(2<em>z</em>))) + (6/<em>z</em>) (1 / (1 - 1/<em>z</em>))

Recall that for |<em>z</em>| < 1, we have

\displaystyle\frac1{1-z}=\sum_{n=0}^\infty z^n

Replace <em>z</em> with 1/<em>z</em> to get

\displaystyle\frac1{1-\frac1z}=\sum_{n=0}^\infty z^{-n}

so that by substitution, we can write

\displaystyle f(z) = 2 - \frac2z \sum_{n=0}^\infty (2z)^{-n} + \frac6z \sum_{n=0}^\infty z^{-n}

Now condense <em>f(z)</em> into one series:

\displaystyle f(z) = 2 - \sum_{n=0}^\infty 2^{-n+1} z^{-(n+1)} + 6 \sum_{n=0}^\infty z^{-n-1}

\displaystyle f(z) = 2 - \sum_{n=0}^\infty \left(6+2^{-n+1}\right) z^{-(n+1)}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{-(n-1)+1}\right) z^{-n}

\displaystyle f(z) = 2 - \sum_{n=1}^\infty \left(6+2^{2-n}\right) z^{-n}

So, the inverse <em>Z</em> transform of <em>f(z)</em> is \boxed{6+2^{2-n}}.

4 0
3 years ago
The correct statement about the lift and drag on an object is:_______
Lisa [10]

Answer:

(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift

Explanation:

When a fluid flows around the surface of an object, it exerts a force on it. This force has two components, namely lift and drag.

The component of this force that is perpendicular (normal) to the freestream velocity is known as lift, while the component of this force that is parallel or in the direction of the fluid freestream flow is known as drag.

Lift is as a result of pressure differences, while drag results from forces due to pressure distributions over the object surface, and forces due to skin friction or viscous force.

Thus, drag results from the combination of pressure and viscous forces while lift results only from the<em> pressure differences</em> (not pressure forces as was used in option D).

The only correct option left is "A"

(a). the resultant force in the direction of the freestream velocity is termed the drag and the resultant force normal to the freestream velocity is termed the lift

8 0
3 years ago
Read 2 more answers
Is EPA is the organization that was formed to ensure safe and health working conditions for workers by setting and enforcing sta
mr_godi [17]
Let me search this up
3 0
2 years ago
Current density is given in cylindrical coordinates as J = −106z1.5az A/m2 in the region 0 ≤ rho ≤ 20 µm; for rho ≥ 20 µm, J = 0
Naily [24]

Question:

Current density is given in cylindrical coordinates as J = −10^6z^1.5az A/m² in the region 0 ≤ ρ ≤ 20 µm; for ρ ≥ 20 µm, J = 0.

(a) Find the total current crossing the surface z = 0.1 m in the az direction.

(b) If the charge velocity is 2 × 10^6 m/s at z = 0.1 m, find ρν there.

(c) If the volume charge density at z = 0.15 m is −2000 C/m3, find the charge velocity there.

Answer:

a. -39.8μA

b. -15.81mC/m³

c. 29.05m/s

Explanation:

Given

Density = J = −10^6z^1.5az A/m²

Region: 0 ≤ ρ ≤ 20 µm

ρ ≥ 20 µm

J = 0.

a. Total current is calculated by.

J * ½((ρ1)² - (ρ0)²) * 2 π * φdza.

Where J = Density = -10^6 * z^1.5

ρ1 = Upper bound of ρ = 20

ρ0 = Lower bound of ρ = 0

π = 22/7

φdza = 10^-6

z = 0.1

Total current

= -10^6 * z^1.5 * ½(20² - 0²) * 2 * 22/7 * 10^-6

= 10^6 * 0.1^1.5 * ½(20² - 0²) * 2 * 22/7 * 10^-6

= −39.7543477278310

= -39.8μA

b. Calculating velocity charge density at (ρv)

Density (J) = ρv * V

Where J = Density = -10^6 * z^1.5

V = 2 * 10^6

z = 0.1

Substitute the above values

-10^6 * 0.1 ^1.5 = ρv * 2 * 10^6

ρv = (-10^6 * 0.1^1.5)/(2 * 10^6)

ρv = -0.1^1.5/(2)

ρv = -0.015811388300841

ρv = -0.01581 --------- Approximated

ρv = -15.81mC/m³

c. Calculating Velocity

Velocity = J/V

Where Velocity Charge Density = -2000 C/m3

Where J = -10^6 * z^1.5

z = 0.15

J = -10^6 * 0.15^1.5

J = -58094.75019311125

Velocity = -58094.75019311125/-2000

Velocity = 29.047375096555625m/s

Velocity = 29.05m/s

8 0
3 years ago
The fracture strength of glass may be increased by etching away a thin surface layer. It is believed that the etching may alter
Korvikt [17]

Answer:

the ratio of the etched to the original crack tip radius is 30.24

Explanation:

Given the data in the question;

we determine the initial fracture stress using the following expression;

(σf)₁ = 2(σ₀)₁ [ α₁/(p_t)₁ ]^{1/2 ----- let this be equation 1

where; (σ₀)₁ is the initial fracture strength

(p_t)₁ is the original crack tip radius

α₁ is the original crack length.

first, we determine the final crack length;

α₂ = α₁ - 16% of α₁

α₂ = α₁ - ( 0.16 × α₁)

α₂ = α₁ - 0.16α₁

α₂ = 0.84α₁

next, we calculate the final fracture stress;

the fracture strength is increased by a factor of 6;

(σ₀)₂ = 6( σ₀ )₁

Now, expression for the final fracture stress

(σf)₂ = 2(σ₀)₂ [ α₂/(p_t)₂ ]^{1/2 ------- let this be equation 2

where (p_t)₂ is the etched crack tip radius

value of fracture stress of glass is constant

Now, we substitute 2(σ₀)₁ [ α₁/(p_t)₁ ]^{1/2 from equation for (σf)₂  in equation 2.

0.84α₁ for α₂.

6( σ₀ )₁ for (σ₀)₂.

∴

2(σ₀)₁ [ α₁/(p_t)₁ ]^{1/2  = 2(6( σ₀ )₁) [ 0.84α₁/(p_t)₂ ]^{1/2  

divide both sides by 2(σ₀)₁

[ α₁/(p_t)₁ ]^{1/2  =  6 [ 0.84α₁/(p_t)₂ ]^{1/2

[ 1/(p_t)₁ ]^{1/2  =  6 [ 0.84/(p_t)₂ ]^{1/2

[ 1/(p_t)₁ ]  =  36 [ 0.84/(p_t)₂ ]

1 / (p_t)₁ = 30.24 / (p_t)₂

(p_t)₂ = 30.24(p_t)₁

(p_t)₂/(p_t)₁ = 30.24

Therefore, the ratio of the etched to the original crack tip radius is 30.24

6 0
3 years ago
Other questions:
  • (20pts) Air T[infinity] = 10 °C and u[infinity] = 100 m/s flows over a flat plate. Assume that the density of air is 1.0 kg/m3 a
    6·1 answer
  • Hi, I have an assignment in which i needs to write a report on (Rationalization of electrical energy consumption) and i need cha
    6·1 answer
  • A shaft is made of an aluminum alloy having an allowable shear stress of τallow = 100 MPa. If the diameter of the shaft is 100 m
    13·2 answers
  • The velocity of a point mass that moves along the s-axis is given by s' = 40 - 3t^2 m/s, where t is in seconds. Find displacemen
    7·1 answer
  • A 0.39 percent Carbon hypoeutectoid plain-carbon steel is slowly cooled from 950 oC to a temperature just slightly below 723 oC.
    15·1 answer
  • How can the direction of rotation of a split-phase motor be changed? *
    15·2 answers
  • If noise levels are high enough that you have to raise
    7·1 answer
  • 1. What is the maximum value of the linear density in a crystalline solid (linear density defined as the fraction of the line le
    10·1 answer
  • Characteristics of 3 types of soil​
    10·1 answer
  • Which of the following is NOT one of the 3 technology bets we have made?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!