Answer:
Restoring force of the spring is 50 N.
Explanation:
Given that,
Spring constant of the spring, k = 100 N/m
Stretching in the spring, x = 0.5 m
We need to find the restoring force of the spring. It can be calculated using Hooke's law as "the force on a spring varies directly with the distance that it is stretched".


F = 50 N
So, the restoring force of the spring is 50 N. Hence, this is the required solution.
The magnitude of the resultant is
√ (22² + 2.2²) = √ (484 + 4.84) = √488.84 = 22.11 m/s .
The direction of the resultant is
tan⁻¹(22N / 2.2E) = tan⁻¹(10) = 5.71° east of north .
Answer:
<h2>104 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 26 × 4
We have the final answer as
<h3>104 N</h3>
Hope this helps you
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get: