Number 19 is frequency and not sure which question you asked!!!??
Answer:
a)
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
the required distance is 40.98 m
Explanation:
Given that;
velocity of the river u = 1.70 m/s
velocity of boat v = 14.0 m/s
Now to get the velocity of the boat relative to shore;
( north of east), we say
a² + b² = c²
(1.70)² + (14.0)² = c²
2.89 + 196 = c²
198.89 = c²
c = √198.89
c = 14.1028 m/s
tan∅ = v/u = 14 / 1.7 = 8.23529
∅ = tan⁻¹ ( 8.23529 ) = 83.0765° north of east
Therefore, the velocity of the boat relative to shore is;
v = 14.1028 m/s
∅ = 83.0765° north of east
b)
width of river = 340 m,
ow far downstream has the boat moved by the time it reaches the north shore in meters = ?
we say;
340sin( 90° - 83.0765°)
⇒ 340sin( 6.9235°)
= 40.98 m
Therefore, the required distance is 40.98 m
The work done to pull the sled up to the hill is given by

where
F is the intensity of the force
d is the distance where the force is applied.
In our problem, the work done is

and the distance through which the force is applied is

, so we can calculate the average force by re-arranging the previous equation and by using these data:
The best scenario to describe the doppler effect would be listening to the siren of a passing ambulance or fire truck
then it is coming towards you, the pitch is higher, it gets higher as it approaches and peaks as it gets right in front of you. then it drop at once when it passes you and continues to drop till it fades away. this is a classic descrption of the doppler effect