Answer: <u>In a divergent plate boundary</u>, seafloor spreading taking place. It leads to the formation of oceans as new materials are added here along the mid-oceanic ridge. There occur volcanism and shallow-focus earthquakes.
<u>In a convergent plate boundary</u>, two plates collide to form high mountain belts and also volcanic eruptions take place. There occur long chains of volcanic as well as island arcs, in association with deep-focus earthquakes.
<u>In a transform plate boundary</u>, two plates slide past each other, conserving the plates. Shallow-focus earthquakes are generated here.
The earth has experienced various geological processes, such as weathering and erosion of rocks, earthquakes, volcanic eruptions, mass extinction events, plate tectonic movements and many more. These continuous processes have configured the present shape of the earth's surface.
For example, the breaking up of the supercontinent Pangea divided into Laurasia and Gondwanaland and subsequently formed the present scenario. This separation of continents has taken place due to the convection current that generates in the mantle.
Answer:
Explanation:
F = ma and
We have F, we have m, but in order to solve for v, we need a.
30.0 = 3.00a so
a = 10.0 m/s/s. Plug that in for a in the second equation and solve for v:
so
v = 10.0(3.00) so
v = 30.0 m/s
Passengers in an aircraft are subject to the Normal and Gravity Force acting on them at a low 'orbit', so tiny that it can be many times compared to the same surface of the earth when speaking in general terms.
In a high orbit space vehicle or in the same space, said force decreases considerably or simply disappears, generating the sensation of weightlessness.
Remember that the Force of Gravity is given under the principle

Where,
G = Gravitational Universal constant
M = Mass of the planet
m = mass of the object
r = Distance from center of the planet
When the radius grows considerably the gravitational force begins to decrease.
200g*1 mole/ 18g=11.1 moles There are 11.1 moles of water.
Answer:
25.33 rpm
Explanation:
M = 100 kg
m1 = 22 kg
m2 = 28 kg
m3 = 33 kg
r = 1.60 m
f = 20 rpm
Let the new angular speed in rpm is f'.
According to the law of conservation of angular momentum, when no external torque is applied, then the angular momentum of the system remains constant.
Initial angular momentum = final angular momentum
(1/2 x M x r^2 + m1 x r^2 + m2 x r^2 + m3 x r^2) x ω =
(1/2 x M x r^2 + m1 x r^2 + m3 x r^2 ) x ω'
(1/2 M + m1 + m2 + m3) x 2 x π x f = (1/2 M + m1 + m3) x 2 x π x f'
( 1/2 x 100 + 22 + 28 + 33) x 20 = (1/2 x 100 + 22 + 33) x f'
2660 = 105 x f'
f' = 25.33 rpm