Complete question:
A taut rope has a mass of 0.123 kg and a length of 3.54 m. What average power must be supplied to the rope to generate sinusoidal waves that have amplitude 0.200 m and wavelength 0.600 m if the waves are to travel at 28.0 m/s ?
Answer:
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Explanation:
Velocity = Frequency X wavelength
V = Fλ ⇒ F = V/λ
F = 28/0.6 = 46.67 Hz
Angular frequency (ω) = 2πF = 2π (46.67) = 93.34π rad/s
Average power supplied to the rope will be calculated as follows

where;
ω is the angular frequency
A is the amplitude
V is the velocity
μ is mass per unit length = 0.123/3.54 = 0.0348 kg/m
= 1676.159 watts
The average power supplied to the rope to generate sinusoidal waves is 1676.159 watts.
Answer:
The shear deformation is
.
Explanation:
Given that,
Shearing force F = 600 N
Shear modulus 
length = 0.700 cm
diameter = 4.00 cm
We need to find the shear deformation
Using formula of shear modulus



Put the value into the formula


Hence, The shear deformation is
.
Answer:
160 m
Explanation:
distance covered in 1 s = 8 m
therefore, distance covered in 20 s = 8 * 20 m = 160 m
Answer:
120 Newton
Explanation:
Given the following data;
Mass = 12 kg
Angle = 4°
We know that acceleration due to gravity is equal to 10 m/s
To find the minimum force to stop the block from sliding;
Force = mgCos(d)
Where;
m is the mass of an object.
g is the acceleration due to gravity.
d is the angle of inclination (theta).
Substituting into the formula we have;
F = 12*10*Cos(4°)
F = 120 * 0.9976
F = 119.71 ≈ 120 Newton
Answer:
the new length is 17.435cm
Explanation:
the new length is 17.435cm
pls give brainliest