Missing graph. I attach it in the answer.
In a uniformly accelerated motion, the velocity at time t is given by:

where a is the acceleration and t is the time.
Given the previous equation, if we plot v(t) versus t, we find a straight line; moreover, a (the acceleration) represents the slope of the curve.
Looking at the graph, we see that when the time goes from 10 s to 20 s, the velocity increases from 4 m/s to 6 m/s. Therefore the slope of the curve is

and this corresponds to the acceleration.
So, the correct answer is <span>
0.2 m/s2.</span>
Answer:
Will result in :Greater Compton scatter interaction
Explanation
This is because The 15% rule states that changing the kVp by 15% has the same effect as doubling the mAs, or reducing the mAs by 50%; that is A 15% increase in kVp has the same effect as doubling the mAs and vice versa but in this case reducing mas causes more Compton scatter because Compton scattering occurs at a lower kvp
Answer:
The answer is d i think so yea
Explanation:
hope u hae a really good day
Answer:
Velocity of throwing = 34.335 m/s
Explanation:
Time taken by the tennis ball to reach maximum height, t = 0.5 x 7 = 3.5 seconds.
Let the initial velocity be u, we have acceleration due to gravity, a = -9.81 m/s² and final velocity = 0 m/s
Equation of motion result we have v = u + at
Substituting
0 = u - 9.81 x 3.5
u = 34.335 m/s
Velocity of throwing = 34.335 m/s
Answer:
The wavelength is 
Explanation:
From the question we are told that
The wavelength of the first light is 
The order of the first light that is being considered is
The order of the second light that is being considered is
Generally the distance between the fringes for the first light is mathematically represented as

Here D is the distance from the screen
and d is the distance of separation of the slit.
For the second light the distance between the fringes is mathematically represented as

Now given that both of the light are passed through the same double slit

=> 
=> 
=> 
=> 