Answer:
The raw score for his exam grade is 99.69.
Step-by-step explanation:
Given : The professor announced that the mean for the class final exam was 88 with a standard deviation of 7. Given Daniel's z score of 1.67.
To find : What is the raw score for his exam grade?
Solution :
The formula use to find the z-score is

Where, z=1.67 is the z-score
is the means
is the standard deviation
x is the raw score for his exam grade
Substitute the values,





Therefore, the raw score for his exam grade is 99.69.
Answer:
Perimeter = 18.7 units
Area = 13.5 units²
Step-by-step explanation:
Perimeter of ADEC = AD + DE + EC + AC
Length of AD = 3 units
By applying Pythagoras theorem in ΔDBE,
DE² = DB² + BE²
DE² = 3² + 3²
DE = √18
DE = 4.24 units
Length of EC = 3 units
By applying Pythagoras theorem in ΔABC,
AC² = AB² + BC²
AC² = 6² + 6²
AC = √72
AC = 8.49 units
Perimeter of ADEC = 3 + 4.24 + 3 + 8.49
= 18.73 units
≈ 18.7 units
Area of ADEC = Area of ΔABC - Area of ΔBDE
Area of ΔABC = 
= 
= 18 units²
Area of ΔBDE = 
= 
= 4.5 units²
Area of ADEC = 18 - 4.5
= 13.5 units²
Answer:
k= -4
Step-by-step explanation:
The situation can be modeled by a geometric sequence with an initial term of 284. The student population will be 104% of the prior year, so the common ratio is 1.04.
Let \displaystyle PP be the student population and \displaystyle nn be the number of years after 2013. Using the explicit formula for a geometric sequence we get
{P}_{n} =284\cdot {1.04}^{n}P
n
=284⋅1.04
n
We can find the number of years since 2013 by subtracting.
\displaystyle 2020 - 2013=72020−2013=7
We are looking for the population after 7 years. We can substitute 7 for \displaystyle nn to estimate the population in 2020.
\displaystyle {P}_{7}=284\cdot {1.04}^{7}\approx 374P
7
=284⋅1.04
7
≈374
The student population will be about 374 in 2020.