___________________________________________________________
Answer:
Chemical reactions that take place inside living things are called biochemical reactions. The sum of all the biochemical reactions in an organism is referred to as metabolism. Metabolism includes both exothermic (heat-releasing) chemical reactions and endothermic (heat-absorbing) chemical reactions.
___________________________________________________________
Answer:
2.30 × 10⁻⁶ M
Explanation:
Step 1: Given data
Concentration of Mg²⁺ ([Mg²⁺]): 0.039 M
Solubility product constant of Mg(OH)₂ (Ksp): 2.06 × 10⁻¹³
Step 2: Write the reaction for the solution of Mg(OH)₂
Mg(OH)₂(s) ⇄ Mg²⁺(aq) + 2 OH⁻(aq)
Step 3: Calculate the minimum [OH⁻] required to trigger the precipitation of Mg²⁺ as Mg(OH)₂
We will use the following expression.
Ksp = 2.06 × 10⁻¹³ = [Mg²⁺] × [OH⁻]²
[OH⁻] = 2.30 × 10⁻⁶ M
32 electrons. as the orbitals get father away from the nucleus, they hold more electrons.
Answer : The molecular formula of a compound is, 
Solution : Given,
Mass of C = 64.03 g
Mass of H = 4.48 g
Mass of Cl = 31.49 g
Molar mass of C = 12 g/mole
Molar mass of H = 1 g/mole
Molar mass of Cl = 35.5 g/mole
Step 1 : convert given masses into moles.
Moles of C = 
Moles of H = 
Moles of Cl = 
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For C = 
For H = 
For Cl = 
The ratio of C : H : Cl = 6 : 5 : 1
The mole ratio of the element is represented by subscripts in empirical formula.
The Empirical formula = 
The empirical formula weight = 6(12) + 5(1) + 1(35.5) = 112.5 gram/eq
Now we have to calculate the molecular formula of the compound.
Formula used :


Molecular formula = 
Therefore, the molecular of the compound is, 