The equation
(option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:


Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
: is the initial velocity of the<em> lab cart </em>
: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
: is the final velocity of the<em> lab cart </em>
: is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

Therefore, the equation
represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Answer:
The answer is A
Explanation:
It is A because your body heat is warmer than the banana and when you hold it the heat is transferring over.
Answer:
T1 = 130N, T2 = 370N
Explanation:
In order for the system to be at rest, the sum of all forces must be zero and the torque around a point on the beam must be zero.
1. forces:
Let tension in rope 1 be T1 and in rope 2 be T2:
ma = T1 + T2 - 100N - 400N = 0
(1) T1 + T2 = 500N
2. torque around the center point of the beam:
τ = r x F = 5*T1 + 3*400N - 5*T2 = 0
(2) T1 - T2 = -240N
Solving both equations:
T1 = 130N
T2 = 370N
People, and cars
is the right answer!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:

Explanation:
As we know that volume of cylinder is

Where v=volume , h= height or thickness and r= radius
Here,

Putting these values in the previous equation , we get

Therefore thickness is 27.5 m