Answer:
U₂ = 400 KJ
Explanation:
Given that
Initial energy of the tank ,U₁= 800 KJ
Heat loses by fluid ,Q= - 500 KJ
Work done on the fluid ,W= - 100 KJ
Sign -
1.Heat rejected by system - negative
2.Heat gain by system - Positive
3.Work done by system = Positive
4.Work done on the system-Negative
Lets take final internal energy =U₂
We know that
Q= U₂ - U₁ + W
-500 = U₂ - 800 - 100
U₂ = -500 +900 KJ
U₂ = 400 KJ
Therefore the final internal energy = 400 KJ
Answer:
5.09 x 10⁵ Nm²/C
Explanation:
The electric flux φ through a planar area is defined as the electric field Ε times the component of the area Α perpendicular to the field. i.e
φ = E A
From the question;
E = (8.0j + 2.0k) ✕ 10³ N/C
r = radius of the circular area = 9.0m
A = area of a circle = π r² [Take π = 3.142]
A = 3.142 x 9² = 254.502m²
Now, since the area lies in the x-y plane, only the z-component of the electric field is responsible for the electric flux through the circular area.
Therefore;
φ = (2.0) x 10³ x 254.502
φ = 5.09 x 10⁵ Nm²/C
The electric flux is 5.09 x 10⁵ Nm²/C
Answer:
<em>20.08 Volts</em>
Explanation:
<u>Parallel Connection of Capacitors</u>
The voltage across any two elements connected in parallel is the same. If the elements are capacitors, then each voltage is


They are both the same after connecting them, thus

Or, equivalently

The total charge of both capacitors is

We can compute the total charge by using the initial conditions where both capacitors were disconnected:

Now we compute Q1 from the equation above

The final voltage of any of the capacitors is

Answer:
Opposite
Explanation:
Newton's third law of motion states that for every action there is an equal but opposite reaction.
Action-reaction force pairs make it possible for fishes to swim, birds to fly, cars to move etc,
For example, while driving down the road, a firefly strikes the windshield of a car (Action) and makes a quite obvious mess in front of the face of the driver (Reaction) i.e the firefly hit the car and the car hits the firefly.
The ultimately implies that, in every interaction, there is a pair of equal but opposite forces acting on the two interacting physical objects.
Hence, whenever any physical object exerts a force (action) on another physical object, the second physical object exerts a force (reaction) of the same amount, but acting in opposite direction to that of the first physical object.