Your rise over run will be -3 over 1 your going to start at the point 5 on the y-axis when your at the point 5 go down 3 then over to the right 1 keep going till it off the graph. Now do the opposite way and go up 3 from 5 and to the left 1 and keep doing that till it’s off the graph.
Hope this helps
Sum is used for addition so the answer would be:
D. f+6
Answer:
Mean=16.5
Median=9.5
Step-by-step explanation:
Answer:
The first one.
Step-by-step explanation:
Both of the equations in the parenthesis have the same value, and 1/2 isn't as much as a whole.
Answer:
![sin O=\dfrac{3\sqrt{13}}{13}\\cos O=\dfrac{2\sqrt{13}}{13}\\tan O=\dfrac{3}{2}](https://tex.z-dn.net/?f=sin%20O%3D%5Cdfrac%7B3%5Csqrt%7B13%7D%7D%7B13%7D%5C%5Ccos%20O%3D%5Cdfrac%7B2%5Csqrt%7B13%7D%7D%7B13%7D%5C%5Ctan%20O%3D%5Cdfrac%7B3%7D%7B2%7D)
Step-by-step explanation:
If the point (2,3) is on the terminal side of an angle in standard position.
Adjacent of O, x=2,
Opposite of O, y=3
Next, we determine the hypotenuse, r using Pythagoras Theorem.
![Hypotenuse =\sqrt{Opposite^2+Adjacent^2} \\r=\sqrt{3^2+2^2} \\r=\sqrt{13}](https://tex.z-dn.net/?f=Hypotenuse%20%3D%5Csqrt%7BOpposite%5E2%2BAdjacent%5E2%7D%20%5C%5Cr%3D%5Csqrt%7B3%5E2%2B2%5E2%7D%20%5C%5Cr%3D%5Csqrt%7B13%7D)
Therefore:
![sin O=\dfrac{Opposite}{Hypotenuse} \\sin O=\dfrac{3}{\sqrt{13}} \\$Rationalizing\\sin O=\dfrac{3\sqrt{13}}{13}](https://tex.z-dn.net/?f=sin%20O%3D%5Cdfrac%7BOpposite%7D%7BHypotenuse%7D%20%5C%5Csin%20O%3D%5Cdfrac%7B3%7D%7B%5Csqrt%7B13%7D%7D%20%5C%5C%24Rationalizing%5C%5Csin%20O%3D%5Cdfrac%7B3%5Csqrt%7B13%7D%7D%7B13%7D)
![cos O=\dfrac{Adjacent}{Hypotenuse} \\cos O=\dfrac{2}{\sqrt{13}} \\$Rationalizing\\cos O=\dfrac{2\sqrt{13}}{13}](https://tex.z-dn.net/?f=cos%20O%3D%5Cdfrac%7BAdjacent%7D%7BHypotenuse%7D%20%5C%5Ccos%20O%3D%5Cdfrac%7B2%7D%7B%5Csqrt%7B13%7D%7D%20%5C%5C%24Rationalizing%5C%5Ccos%20O%3D%5Cdfrac%7B2%5Csqrt%7B13%7D%7D%7B13%7D)
![Tan O=\dfrac{Opposite}{Adjacent} \\tan O=\dfrac{3}{2}](https://tex.z-dn.net/?f=Tan%20O%3D%5Cdfrac%7BOpposite%7D%7BAdjacent%7D%20%5C%5Ctan%20O%3D%5Cdfrac%7B3%7D%7B2%7D)