Answer:
y=
1
2
x;−3y=4+
1
2
x
Rewrite equations:
y=
1
2
x;−3y=
1
2
x+4
Step: Solvey=
1
2
xfor y:
y=
1
2
x
Step: Substitute
1
2
xforyin−3y=
1
2
x+4:
−3y=
1
2
x+4
−3
1
2
x=
1
2
x+4
−3
2
x=
1
2
x+4(Simplify both sides of the equation)
−3
2
x+
−1
2
x=
1
2
x+4+
−1
2
x(Add (-1)/2x to both sides)
−2x=4
−2x
−2
=
4
−2
(Divide both sides by -2)
x=−2
Step: Substitute−2forxiny=
1
2
x:
y=
1
2
x
y=
1
2
(−2)
y=−1(Simplify both sides of the equation)
Answer:
x=−2 and y=−1
Step-by-step explanation:
Sorry if it is too confusing
Answer:
48
Step-by-step explanation:
Fourth day, sixth day, both geysers erupted
4 × 6 × 2 = 48
Answer:
Correct option: (a) 0.1452
Step-by-step explanation:
The new test designed for detecting TB is being analysed.
Denote the events as follows:
<em>D</em> = a person has the disease
<em>X</em> = the test is positive.
The information provided is:

Compute the probability that a person does not have the disease as follows:

The probability of a person not having the disease is 0.12.
Compute the probability that a randomly selected person is tested negative but does have the disease as follows:
![P(X^{c}\cap D)=P(X^{c}|D)P(D)\\=[1-P(X|D)]\times P(D)\\=[1-0.97]\times 0.88\\=0.03\times 0.88\\=0.0264](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%29%3DP%28X%5E%7Bc%7D%7CD%29P%28D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%20P%28D%29%5C%5C%3D%5B1-0.97%5D%5Ctimes%200.88%5C%5C%3D0.03%5Ctimes%200.88%5C%5C%3D0.0264)
Compute the probability that a randomly selected person is tested negative but does not have the disease as follows:
![P(X^{c}\cap D^{c})=P(X^{c}|D^{c})P(D^{c})\\=[1-P(X|D)]\times{1- P(D)]\\=0.99\times 0.12\\=0.1188](https://tex.z-dn.net/?f=P%28X%5E%7Bc%7D%5Ccap%20D%5E%7Bc%7D%29%3DP%28X%5E%7Bc%7D%7CD%5E%7Bc%7D%29P%28D%5E%7Bc%7D%29%5C%5C%3D%5B1-P%28X%7CD%29%5D%5Ctimes%7B1-%20P%28D%29%5D%5C%5C%3D0.99%5Ctimes%200.12%5C%5C%3D0.1188)
Compute the probability that a randomly selected person is tested negative as follows:


Thus, the probability of the test indicating that the person does not have the disease is 0.1452.
Answer:
Step-by-step explanation:
Since the number of pages that this new toner can print is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = the number of pages.
µ = mean
σ = standard deviation
From the information given,
µ = 2300 pages
σ = 150 pages
1)
the probability that this toner can print more than 2100 pages is expressed as
P(x > 2100) = 1 - P(x ≤ 2100)
For x = 2100,
z = (2100 - 2300)/150 = - 1.33
Looking at the normal distribution table, the probability corresponding to the z score is 0.092
P(x > 2100) = 1 - 0.092 = 0.908
2) P(x < 2200)
z = (x - µ)/σ/√n
n = 10
z = (2200 - 2300)/150/√10
z = - 100/47.43 = - 2.12
Looking at the normal distribution table, the probability corresponding to the z score is 0.017
P(x < 2200) = 0.017
3) for underperforming toners, the z score corresponding to the probability value of 3%(0.03) is
- 1.88
Therefore,
- 1.88 = (x - 2300)/150
150 × - 1.88 = x - 2300
- 288 = x - 2300
x = - 288 + 2300
x = 2018
The threshold should be
x < 2018 pages
3/8=answer
1) 5/8-1/4=
2) <u>(</u><u>5</u><u>•</u><u>4</u><u>)</u><u>-</u><u>(</u><u>1</u><u>•</u><u>8</u><u>)</u><u>=</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>8•4
3) <u>20-8</u><u> </u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32 =
4) <u>12</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32=
5) <u>12</u><u>/</u><u>4</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>32/4=
6) <u>3</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>8 =answer