Answer:
law
Explanation:
it is called a scientific law
Respuesta:
4.42 × 10⁻⁶ m³
Explicación:
Paso 1: Información provista
- Densidad del osmio (ρ): 22600 kg/m³
Paso 2: Convertir 100 g a kilogramos
Usaremos el factor de conversion 1 kg = 1000 g.
100 g × 1 kg/1000 g = 0.100 kg
Paso 3: Calcular el volumen ocupado por 0.100 kg de osmio
La densidad es una propiedad intensiva, igual al cociente entre la masa y el volumen.
ρ = m/V
V = m/ρ
V = 0.100 kg / (22600 kg/m³) = 4.42 × 10⁻⁶ m³
Answer:
455.4 g
Explanation:
Data given:
no. of moles of (NH₄)₂SO₄= 3.45 mol
mass of (NH₄)₂SO₄ = ?
Solution
Formula will be used
no.of moles = mass in grams / molar mass
Rearrange the above equation for mass
mass in grams = no. of moles x molar mass . . . . . . . . (1)
molar mass of (NH₄)₂SO₄
molar mass of (NH₄)₂SO₄ = 2(14 + 4(1)) + 32 + 4(16)
molar mass of (NH₄)₂SO₄ = 2 (14 +4) + 32 + 64
molar mass of (NH₄)₂SO₄ = 2 (18) + 32 + 64
molar mass of (NH₄)₂SO₄ = 36 + 32 + 64 = 132 g/mol
Put values in equation 1
mass in grams = 3.45 mole x 132 g/mol
mass in grams = 455.4 g
So,
mass of (NH₄)₂SO₄ = 455.4 g
No because the one valence electron it had is gone so it’s not stable hope this helps
Answer:
Container A is a solution and Container B is a colloid.
Explanation:
Container A is a solution as the tyndall efffect is not present. You cannot see the light bean through the glass.
Container B is a suspension or a colloid as you can see the beam through the glass.
The first option proposes Container A is a colloid...this is not correct
The third option is not true as the tyndall effect is only displayed in container B
The fourth option is not correct the tyndall effect is not present in container A meaning it would not be a suspension or a colloid and you can see the tyndall effect in container B indicating its not a solution