The tangent line to the curve can be determined by implicitly differentiating the equation of the curve. In this case, with the equation <span>y sin 12x = x cos 2y, (π/2, π/4), the implicit differentiation is 12 y cos 12x dx + sin 12 x dy = -2x sin 2y dy + cos 2y dx; dx (12 y cos 12x - cos 2y) = dy (</span><span>-2x sin 2y - sin 12x). Hence
y' = (</span>12 y cos 12x - cos 2y) / (<span>-2x sin 2y - sin 12x)</span>