Explanation:
Entropy means the amount of randomness present within the molecules of the body of a substance.
Relation between entropy and microstate is as follows.
S = 
where, S = entropy
= Boltzmann constant
= number of microstates
This equation only holds good when the system is neither losing or gaining energy. And, in the given situation we assume that the system is neither gaining or losing energy.
Also, let us assume that
= 1, and
= 0.833
Therefore, change in entropy will be calculated as follows.

= 
= 
= 
or, = 
Thus, we can conclude that the entropy change for a particle in the given system is
J/K particle.
Answer:
It would probably be, something that can take up moisture to test it.
Explanation:
(to see if it can evaporate)
Answer:
See the answers below
Explanation:
1) 100. mL of solution containing 19.5 g of NaCl (3.3M)
2) 100. mL of 3.00 M NaCl solution (3 M)
3) 150. mL of solution containing 19.5 g of NaCl (2.2 M)
4) Number 1 and 5 have the same concentration (1.5M)
MW of NaCl = 23 + 36 = 59 g
For number 3
59 g ------------------- 1 mol
19,5 g ----------------- x
x = 19.5 x 1/59 = 0.33 mol
Molarity (M) = 0.33 mol/0.150 l = 2.2 M
For number 4,
Molarity (M) = 0.33mol/0.10 l = 3.3 M
For number 5
Molarity (M) = 0.450/0.3 = 1.5 M
In an acidic solution, the concentration of H+ is greater than the concentration of OH-. The pH will be less than 7.
In a basic solution, the concentration of OH- is greater than the concentration of H+. The pH will be greater than 7.
In a neutral solution, the concentration of H+ ions to OH-ions will be equal, and will therefore have a pH of 7. (This is due to water autoionization, which we usually ignore because it is small in other circumstances.)
Answer:
6H20 represents six molecules of water