<u>Answer:</u> No crystals of potassium sulfate will be seen at 0°C for the given amount.
<u>Explanation:</u>
We are given:
Mass of potassium nitrate = 47.6 g
Mass of potassium sulfate = 8.4 g
Mass of water = 130. g
Solubility of potassium sulfate in water at 0°C = 7.4 g/100 g
This means that 7.4 grams of potassium sulfate is soluble in 100 grams of water
Applying unitary method:
In 100 grams of water, the amount of potassium sulfate dissolved is 7.4 grams
So, in 130 grams of water, the amount of potassium sulfate dissolved will be 
As, the soluble amount is greater than the given amount of potassium sulfate
This means that, all of potassium sulfate will be dissolved.
Hence, no crystals of potassium sulfate will be seen at 0°C for the given amount.
Answer:- d) 42 kJ of heat is released and the reaction is exothermic.
Solution:- Heat of reaction is the summation of heats of products - reactants.
![\Delta H_r_x_n=\sum [products-reactants]](https://tex.z-dn.net/?f=%5CDelta%20H_r_x_n%3D%5Csum%20%5Bproducts-reactants%5D)
From given information, the energy contained by products is 352 kJ and the energy contained by reactants is 394 kJ. Let's plug in the values in the formula:
= [352 kJ - 394 kJ]
= -42 kJ
Heat of reaction is -42 kJ. The negative sign indicates the heat is released means the reaction is exothermic.
So, the correct option is the last one, 42 kJ of heat is released and the reaction is exothermic.
Answer:
:)
Explanation:
Petroleum gas is mainly C3 and C4 based (propane and butane), whilst natural gas is predominantly C1 and C2 (methane and ethane). Petroleum gas is generally produced via the cracking of naphtha, which is one of the components separated during crude oil refining.