Answer:
0.22 mol HClO, 0.11mol HBr.
0.25mol NH₄Cl, 0.12 mol HCl
Explanation:
A buffer is defined as a mixture in solution between weak acid and its conjugate base or vice versa.
Potassium hypochlorite (KClO) could be seen as conjugate base of HClO (Weak acid). That means the addition of <em>0.22 mol HClO </em>will convert the solution in a buffer. HBr reacts with KClO producing HClO, thus, <em>0.11mol HBr</em> will, also, convert the solution in a buffer. 0.23 mol HBr will react completely with KClO and in the solution you will have only HClO, no a buffering system.
Ammonia (NH₃) is a weak base and its conjugate base is NH₄⁺. That means the addition of <em>0.25mol NH₄Cl</em> will convert the solution in a buffer. Also, NH₃ reacts with HCl producing NH₄⁺. Thus, addition of<em> 0.12 mol HCl</em> will produce NH₄⁺. 0.25mol HCl consume all NH₃.
Answer:
D
Explanation:
An ion is created because an atom doesn't have a balanced number of protons and electrons. A positive ion is created by an atom losing an electron and a negative ion is created by an atom gaining an electron.
The volume of 0.555M KNO3 solution would contain 12.5 g of solute iss 223 mL.
<h3>What is the relationship between mass of solute and concentration of solution?</h3>
The mass of solute in a given volume of solution is related by the formula below:
- Molarity = mass/(molar mass * volume)
Therefore, volume of solution is given by:
Volume = Mass /molarity * molar mass
Molar mass of KNO₃ = 101 g/mol
Volume = 12.5/(0.555 * 101)
Volume = 0.223 L or 223 mL
In conclusion, the volume of the solution is obtained from the molarity of solution as well as mass and molar mass of solute.
Learn more about molarity and volume at: brainly.com/question/26873446
#SPJ1
<span>The equation that represents the process of photosynthesis
is: </span>
<span>
</span>
<span>6CO2+12H2O+light->C6H12O6+6O2+6H2O</span>
<span>
</span>
<span>Photosynthesis is the
process in plants to make their food. This involves the use carbon dioxide to
react with water and make sugar or glucose as the main product and oxygen as a
by-product. Since we are not given the mass of CO2 in this problem, we assume that we have 1 g of CO2 available. We calculate as follows:</span>
<span>
</span>
<span>1 g CO2 ( 1 mol CO2 / 44.01 g CO2 ) ( 12 mol H2O / 6 mol CO2 ) ( 18.02 g / 1 mol ) = 0.82 g of H2O is needed</span>
<span>
</span>
However, if the amount given of CO2 is not one gram, then you can simply change the starting value in the calculation and solve for the mass of water needed.
<span>
</span>