Answer:
The solution is x = e⁶
Step-by-step explanation:
Hi there!
First, let´s write the equation
ln(x⁶) = 36
Apply logarithm property: ln(xᵃ) = a ln(x)
6 ln(x) = 36
Divide both sides of the equation by 6
ln(x) = 6
Apply e to both sides
e^(ln(x)) = e⁶
x = e⁶
The solution is x = e⁶
Let´s prove why e^(ln(x)) = x
Let´s consider this function:
y = e^(ln(x))
Apply ln to both sides of the equation
ln(y) = ln(e^(ln(x)))
Apply logarithm property: ln(xᵃ) = a ln(x)
ln(y) = ln(x) · ln(e) (ln(e) = 1)
ln(y) = ln(x)
Apply logarithm equality rule: if ln(a) = ln(b) then, a = b
y = x
Since y = e^(ln(x)), then x =e^(ln(x))
Have a nice day!
Answer:
6x
Step-by-step explanation:
3x*3x= 9x - 3x = 6x
Answer:
32
Step-by-step explanation:
The diagonal of a square has a length of x sqrt(2), where x is the side length. This means the perimeter of the square is 4 (11.3/sqrt(2)), which means the perimeter is approx. 4*8, which is 32