1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
9

10.222 in a fraction

Mathematics
1 answer:
liq [111]3 years ago
8 0
5111/500 or 10 111/500
You might be interested in
Please help with problem and show steps
pshichka [43]
(6x^2+5x+1)/(3x^2+4x+1)
= (3x+1)(2x+1)/(3x+1)(x+1)
= (2x+1)/(x+1)
5 0
3 years ago
Can anyone help me with this please
rosijanka [135]

Answer:

I agree with what they said

Step-by-step explanation:

(:

8 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Use the fundamental identities and appropriate algebraic operations to simplify the following expression. (18 +tan x) (18-tan x)
andrezito [222]

Answer:

a) \left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right)=325

b) The lowest point of y=\cos \left(x\right), 0\leq x\leq 2\pi is when x = \pi

Step-by-step explanation:

a) To simplify the expression \left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)+\sec ^2\left(x\right) you must:

Apply Difference of Two Squares Formula: \left(a+b\right)\left(a-b\right)=a^2-b^2

a=18,\:b=\tan \left(x\right)

\left(18+\tan \left(x\right)\right)\left(18-\tan \left(x\right)\right)=18^2-\tan ^2\left(x\right)=324-\tan ^2\left(x\right)

324-\tan ^2\left(x\right)+\sec ^2\left(x\right)

Apply the Pythagorean Identity 1+\tan ^2\left(x\right)=\sec ^2\left(x\right)

From the Pythagorean Identity, we know that 1=-\tan ^2\left(x\right)+\sec ^2\left(x\right)

Therefore,

324[-\tan ^2\left(x\right)+\sec ^2\left(x\right))]\\324[+1]\\325

b) According with the below graph, the lowest point of y=\cos \left(x\right), 0\leq x\leq 2\pi is when x = \pi

3 0
3 years ago
20 points! Please Help me!
tigry1 [53]
The answer to the following equation is B
7 0
2 years ago
Read 2 more answers
Other questions:
  • The equation of the line that contains the points (1, 7) and (2, 6) is x+y=8
    5·1 answer
  • Cinderella currently does chores for 120 minutes per day. Her evil step-mother wants her to do chores for 200 minutes each day.
    8·2 answers
  • A red, a green, and a pink backback are hanging on hooks in the ckassroom. The total weight of the three backpacks is 32 pounds.
    7·1 answer
  • What is the answer of the above question
    5·1 answer
  • The length of the rectangle is 5 inches more than twice the length of the side of the square
    6·1 answer
  • How do I write 56 1/4% as a fraction in simplest form
    10·2 answers
  • Me to
    11·1 answer
  • Please help me, i will mark the brainliest pls!
    12·1 answer
  • What are the values of w and x ? For brainily
    6·2 answers
  • How many cubes with side lengths of 1/2 cm does it take to fill the prism.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!