Answer : The half-life at this temperature is, 3.28 s
Explanation :
To calculate the half-life for second order the expression will be:
![t_{1/2}=\frac{1}{k\times [A_o]}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5Ctimes%20%5BA_o%5D%7D)
When,
= half-life = ?
= initial concentration = 0.45 M
k = rate constant = 
Now put all the given values in the above formula, we get:


Therefore, the half-life at this temperature is, 3.28 s
Answer:
Carbon- A burnt piece of toast is covered in this element. It is the fourth most abundant element and makes up many living things.
Magnesium- Which element is a member of the alkaline earth metals and has 12 neutrons?
Neon- Which element is an inert gas found in group VIII that produces a red glow in lights?
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1