<span>Simplifying:
2x2 + -8x + -90 = 0
Reorder the terms:
-90 + -8x + 2x2 = 0
Solving
-90 + -8x + 2x2 = 0
Solving for variable 'x'.
Factor out the Greatest Common Factor (GCF), '2'.
2(-45 + -4x + x2) = 0
Factor a trinomial.
2((-5 + -1x)(9 + -1x)) = 0
Ignore the factor 2.
Subproblem 1:
Set the factor '(-5 + -1x)' equal to zero and attempt to solve:
Simplifying
-5 + -1x = 0
Solving
-5 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '5' to each side of the equation.
-5 + 5 + -1x = 0 + 5
Combine like terms:
-5 + 5 = 0
0 + -1x = 0 + 5
-1x = 0 + 5
Combine like terms:
0 + 5 = 5
-1x = 5
Divide each side by '-1'.
x = -5
Simplifying
x = -5
Subproblem 2:
Set the factor '(9 + -1x)' equal to zero and attempt to solve:
Simplifying
9 + -1x = 0
Solving
9 + -1x = 0
Move all terms containing x to the left, all other terms to the right.
Add '-9' to each side of the equation.
9 + -9 + -1x = 0 + -9
Combine like terms:
9 + -9 = 0
0 + -1x = 0 + -9
-1x = 0 + -9
Combine like terms:
0 + -9 = -9
-1x = -9
Divide each side by '-1'.
x = 9
Simplifying
x = 9
Solution
x = {-5, 9}</span>
Lets say the 3x3 Matrix is
M = [1 5 2 ]
[1 1 7 ]
[0 -3 7 ]
We apply the Gauss-Jordan elimination method
(Procedure and result shown in the image below)
Answer:
nnnnnnnjj
Step-by-step explanation:
Answer:
A=132
Step-by-step explanation:
A=ah+bh+ch+1
2﹣a4+2(ab)2+2(ac)2﹣b4+2(bc)2﹣c4=3·10+4·10+5·10+1
2·﹣34+2·(3·4)2+2·(3·5)2﹣44+2·(4·5)2﹣54=132