Answer:
Properties of Metals:
- Shiny
-Malleable
-Good Conductors of electric current
- Good conductors of heat
Properties of Non-metals:
- Dull
- Not Malleable
- Bad conductors of electric current but good electric insulators
- Poor conductors of heat
Note: The first dash for the Properties of metals goes with the first dash of Properties of Non-metals and so on.
<span>We can use the ideal gas law PV=nRT
For the first phase
The starting temperature (T1) is 273.15K (0C). n is 1 mole, R is a constant, P = 1 atm, V1 is unknown.
The end temperature (T2) is unknown, n= 1 mol, R is a constant, P = 3*P1= 3 atm, V2=V1
Since n, R, and V will be constant between the two conditions: P1/T1=P2/T2
or T2= (P2*T1)/(P1) so T2= (3 atm*273.15K)/(1 atm)= 3*273.15= 816.45K
For the second phase:
Only the temperature and volume change while n, P, and R are constant between the start and finish.
So: V1/T1=V2/T2 While we don't know the initial volume, we know that V2=2*V1 and T1=816.45K
So T2=(V2*T1)/V1= (2*V1*T1)/V1=2*T1= 2*816.45K= 1638.9K
To find the total heat added to the gas you need to subtract the original amount of heat so
1638.9K-273.15K= 1365.75K</span>
Answer:In the winter the polar jet moves south and becomes stronger because the North Pole gets colder but the equator stays about the same temperature. This increases the temperature contrast and moves the strengthened polar front jet farther south.
Explanation:
<span>C7H8
First, determine the number of relative moles of each element we have and the molar masses of the products.
atomic mass of carbon = 12.0107
atomic mass of hydrogen = 1.00794
atomic mass of oxygen = 15.999
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
We have 5.27 mg of CO2, so
5.27 / 44.0087 = 0.119749 milli moles of CO2
And we have 1.23 mg of H2O, so
1.23 / 18.01488 = 0.068277 milli moles of H2O
Since there's 1 carbon atom per CO2 molecule, we have
0.119749 milli moles of carbon.
Since there's 2 hydrogen atoms per H2O molecules, we have
2 * 0.068277 = 0.136554 milli moles of hydrogen atoms.
Now we need to find a simple integer ratio that's close to
0.119749 / 0.136554 = 0.876937
Looking at all fractions n/m where n ranges from 1 to 10 and m ranges from 1 to 10, I find a closest match at 7/8 = 0.875 with an error of only 0.001937, the next closest match has an error over 6 times larger. So let's go with the 7/8 ratio.
The numerator in the ratio was for carbon atoms, and the denominator was for hydrogen. So the empirical formula for toluene is C7H8.</span>