1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
7

Given:

Mathematics
1 answer:
stira [4]3 years ago
5 0
Angle CFE is an alternate interior angle with angle FCD
You might be interested in
Ms.hernandez has $100 to spend on parking and admission to the zoo. The parking will cost $7, and admission tickets will cost $1
Mice21 [21]
The answer is Ms Hernandez can bring up to 6 people to the zoo.

x - <span> the number of people that she can bring to the zoo
</span><span>The parking will cost $7: a = 7
</span><span>Admission tickets will cost $15.50 per person: b = 15.50x
She can spend on parking and admission tickets </span><span>$100:
a + b </span>≤<span> 100

a = 7
b = 15.50x

7 + 15.50x </span>≤<span> 100
15.50x </span>≤<span> 100 - 7
15.50x </span>≤<span> 93
x </span>≤<span> 93 / 15.50
x </span>≤ 6
5 0
3 years ago
Read 2 more answers
What 2 numbers should be used to find 231-198 using the 10 methods for subtracting
azamat

Subtract numbers with up to three digits, using formal written

method of columnar subtraction

NB Ensure that children are confident with the methods outlined in the previous

year’s guidance before moving on.

Further develop the use of the empty number line with calculations that bridge 100:

126 – 45 = 81

-5 -10 -10 -10 -10

81 86 96 106 116 126

Use a 200 grid to support counting back in tens and bridging 100

Then use more efficient jumps:



81 86 126

Extend with larger numbers by counting back…

216 – 27 = 189


-1 -6 -20

189 190 196 216

21

…and by counting on to find the difference (small difference):

231 – 198 = 33

+2 +30 +1


198 200 230 231

‘The difference between 198 and 231 is 33.’

Introduce the expanded written method with the calculation presented both

horizontally and vertically (in columns). Use two-digit numbers when introducing this

method, initially:

78 – 23 = 55

70 + 8

−20 + 3

50 + 5 = 55

You might replace the + sign with the word ‘and’ to avoid confusion.

This will lead into the formal written method:

7 8

-2 3

5 5

‘We can’t subtract seven from three, so we need to

exchange a ten for ten ones to give us 60 + 13.’

Use base ten materials to support understanding.

73 is partitioned into 60+13 in

order to calculate 73-27

6 13

7 3

- 2 7

4 6

Use the language of place value to ensure

understanding.

In this example it has only been necessary to

exchange from the tens column.

Use base ten materials to support understanding. Subtract numbers with up to three digits, using formal written

method of columnar subtraction

NB Ensure that children are confident with the methods outlined in the previous

year’s guidance before moving on.

Further develop the use of the empty number line with calculations that bridge 100:

126 – 45 = 81

-5 -10 -10 -10 -10

81 86 96 106 116 126

Use a 200 grid to support counting back in tens and bridging 100

Then use more efficient jumps:



81 86 126

Extend with larger numbers by counting back…

216 – 27 = 189


-1 -6 -20

189 190 196 216

21

…and by counting on to find the difference (small difference):

231 – 198 = 33

+2 +30 +1


198 200 230 231

‘The difference between 198 and 231 is 33.’

Introduce the expanded written method with the calculation presented both

horizontally and vertically (in columns). Use two-digit numbers when introducing this

method, initially:

78 – 23 = 55

70 + 8

−20 + 3

50 + 5 = 55

You might replace the + sign with the word ‘and’ to avoid confusion.

This will lead into the formal written method:

7 8

-2 3

5 5


NB A number line would be an appropriate method for this calculation but use twodigit

numbers to illustrate the formal written method initially.

‘Partition numbers into tens and ones/units.

Subtract the ones, and then subtract the tens.

Recombine to give the answer.’

NB In this example decomposition (exchange) is

not required.

Use the language of place value to

ensure understanding:

‘Eight subtract three, seventy

subtract twenty.’

22

Introduce the expanded written method where exchange/decomposition is

required:


73 − 27 = 46

70 + 3 becomes 60 +13

- 20 + 7 - 20 + 7

40 + 6 = 46

NB children will need to practise partitioning numbers in this way. Base- ten

materials could be used to support this.

When children are confident with the expanded method introduce the formal

written method, involving decomposition/exchange:


73 − 27 = 46


If children are confident, extend the use of the formal written method with

numbers over 100, returning to the expanded method first, if necessary.


235 – 127 = 108

2 15

2 3 5

- 1 2 7

1 0 8

NB If, at any time, children are making significant errors, return to the previous stage

in calculation.

Use the language of place value to ensure

understanding.

‘We can’t subtract seven from three, so we need to

exchange a ten for ten ones to give us 60 + 13.’

Use base ten materials to support understanding.

73 is partitioned into 60+13 in

order to calculate 73-27

6 13

7 3

- 2 7

4 6

Use the language of place value to ensure

understanding.

In this example it has only been necessary to

exchange from the tens column.

Use base ten materials to support understanding.

8 0
3 years ago
Below is data collected from a random sample of 80 students regarding
Vsevolod [243]

<u>Corrected Question</u>

Below is data collected from a random sample of 80 students regarding  their fitness habits. If the entire school has 600 students, then what is  a reasonable estimate for the number of students who consider themselves to have an average fitness habits.

Answer:

(D)330

Step-by-step explanation:

Out of a random sample of 80 students

44 considered themselves to have AVERAGE fitness habits.

Relative Frequency of Students with average fitness habits=44/80

Therefore, out of the total population of 600 students

Expected Number of Students with average fitness habits

=Relative Frequency of Students with average fitness habits X Total Population

=\dfrac{44}{80}X600\\\\ =330

<u>The correct option is D.</u>

3 0
4 years ago
Given:<br> RS = 3x - 16<br> ST = 4x - 8<br> RT = 60<br> Solve for RS.
Aleks04 [339]

The value of RS in the line segment is 20

To solve for RS :

From the line segment attached :

The information given is :

RS = 3x - 16

ST = 4x - 8

RT = 60

RT = RS + ST

60 = 3x - 16 + 4x - 8

60 = 7x - 24

60 + 24 = 7x

84 = 7x

Divide both sides by 7

84/7 = x

x = 12

RS = 3x - 16

RS = 3(12) - 16

RS = 36 - 16

RS = 20

HENCE, RS = 20

Learn more : brainly.com/question/24622406

6 0
3 years ago
??? Help me with my work pls
serious [3.7K]

Answer:

2. 10 + 5 x 2                    $20

3. 10 + 5 x 3                    $25

4. 10 + 5 x 4                    $30

Hope that helps!

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Why can you use addition to check a subtraction
    9·2 answers
  • What is the rule for the sequence<br>5/6, 1 1/2, 2 1/6, 2 5/6.....
    8·1 answer
  • PLEASE HELP ASAP!!!!!!
    11·1 answer
  • The length of the hypotenuse of a 30 -60 -90 triangle is 16. What is the perimeter?
    13·2 answers
  • If(2p+3)(p+5)=p2 +p+,whatisthevalueof++?
    9·1 answer
  • Evaluate the expression. 1 2 + 1 4 ÷ 2 3 Write your answer as a fraction or as a whole or mixed number. Submit Not quite—we'll m
    10·1 answer
  • Plz helpppppp!!!!!!!
    8·2 answers
  • Help very urgent, . . .
    10·2 answers
  • PLEASE HELP ASAP PLEASE!!!!
    8·1 answer
  • What is the number numbers are located eight units from the zero on the number lines
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!