Is this a true or false question?
Answer:
vacuum have no air. so, the hot body will remain unchanged in temperature
Explanation:
The way these supersaturated solutions are made is: A. The water would need to be heated to a higher temperature, which would give molecules and ions more kinetic energy, increasing solubility.
Solubility is simply a measure of how readily a substance is able to dissolve in a solvent to form a solution. Thus, a substance is soluble when it dissolves completely in a solvent and it is considered to be insoluble when it does not dissolve in a solvent or if it only dissolves partially.
A supersaturated solution can be defined as a solution that contains more solute than the equilibrium amount.
Generally, supersaturated solutions of solids in water are typically used for the creation of crystals because they are able to hold more of the solute than they would at room temperature.
In order to create these supersaturated solutions, the water should be heated to a higher temperature, so that the water molecules and ions can gain more kinetic energy and thereby increasing solubility.
In conclusion, heating the water to a higher temperature causes the water molecules and ions to gain more kinetic energy and thereby increasing solubility..
Read more: brainly.com/question/24058779
Answer:
work done is -2.8 × 10⁻⁶ J
Explanation:
Given the data in the question;
mass of the pendulum m = 6 kg
Length of core = 1.7 m
Now, case1, mass is pulled aside a small distance of 7.6 cm and released from rest. so let θ₁ be the angle made by mass with vertical axis.
so, θ₁ = ( 7.6 × 10⁻² m / 1.7 m ) = 0.045 rad
In case2, mass is pulled aside a small distance of 8 cm and released from rest. so let θ₁ be the angle made by mass with vertical axis.
so, θ₂ = ( 8 × 10⁻² m / 1.7 m ) = 0.047 rad.
Now, the required work done will be;



W =
-cosθ ![]^{0.047}_{0.045 }](https://tex.z-dn.net/?f=%5D%5E%7B0.047%7D_%7B0.045%20%7D)
W = 6 × 9.8 × 1.7 × [ cos( 0.047 ) - cos( 0.045 ) ]
W = 6 × 9.8 × 1.7 × [ -2.8 × 10⁻⁸ ]
W = -2.8 × 10⁻⁶ J
Therefore, work done is -2.8 × 10⁻⁶ J
Given:
Force(F): 100 N
Acceleration: 10 m/s^2
Now we know that
F= mx a
Where F is the force acting on the object which is measured in Newton
m is the mass of the object measured in Kg
a is the acceleration measured in m/s^2
Substituting the given values in the above formula we get
100= 10m
m= 10 Kg