1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
3 years ago
12

Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the press

ure is 720 kpa (kilopascals). What is the pressure when the volume is 10l ?
Physics
1 answer:
Anna11 [10]3 years ago
7 0

Boyle's law says that the volume of a gas varies inversely with the pressure. When the volume of a certain gas is 4l , the pressure is 720 kpa (kilopascals). What is the pressure when the volume is 10l ?

You might be interested in
A closed, rigid tank fitted with a paddle wheel contains 2 kg of air, initially at 300 K. During an interval of 5 minutes, the p
anzhelika [568]

Answer:

The final temperature of the air is T_2= 605 K

Explanation:

We can start by doing an energy balance for the closed system

\Delta KE+\Delta PE+ \Delta U = Q - W

where

\Delta KE = the change in kinetic energy.

\Delta PE = the change in potential energy.

\Delta U = the total internal energy change in a system.

Q = the heat transferred to the system.

W = the work done by the system.

We know that there are no changes in kinetic or potential energy, so \Delta KE = 0 and \Delta PE=0

and our energy balance equation is \Delta U = Q - W

We also know that the paddle-wheel transfers energy to the air at a rate of 1 kW and the system receives energy by heat transfer at a rate of 0.5 kW, for 5 minutes.

We use this information to calculate the total internal energy change \Delta U=W+Q using the energy balance equation.

We convert the interval of time to seconds t = 5 \:min = 300\:s

\Delta \dot{U}=\dot{W}+ \dot{Q}\\=\Delta U=(W+ Q)\cdot t

\Delta U=(1 \:kW+0.5\:kW)\cdot 300\:s\\\Delta U=450 \:kJ

We can use the change in specific internal energy \Delta U = m(u_2-u_1) to find the final temperature of the air.

We are given that T_1=300 \:K and the air can be describe by ideal gas model, so we can use the ideal gas tables for air to determine the initial specific internal energy u_1

u_1=214.07\:\frac{kJ}{kg}

Next, we will calculate the final specific internal energy u_2

\Delta U = m(u_2-u_1)\\\frac{\Delta U}{m} =u_2-u_1

\frac{\Delta U}{m} =u_2-u_1\\u_2=u_1+\frac{\Delta U}{m}

u_2=214.07 \:\frac{kJ}{kg} +\frac{450 \:kJ}{2 \:kg}\\u_2= 439.07 \:\frac{kJ}{kg}

With the value u_2=439.07 \:\frac{kJ}{kg} and the ideal gas tables for air we make a regression between the values u = 434.78 \:\frac{kJ}{kg},T=600 \:K and u = 442.42 \:\frac{kJ}{kg}, T=610 \:K and we find that the final temperature T_2 is 605 K.

3 0
3 years ago
The mean diameters of Mars and Earth are 6.9 ✕ 103 km and 1.3 ✕ 104 km, respectively. The mass of Mars is 0.11 times Earth's mas
Roman55 [17]

Answer:

(a) Ratio of mean density is 0.735

(b) Value of g on mars 0.920 m,/sec^2

(c) Escape velocity on earth is 3.563\times 10^4m/sec

Explanation:

We have given radius of mars R_{mars}=6.9\times 10^3km=6.9\times 10^6m and radius of earth R_{E}=1.3\times 10^4km=1.3\times 10^7m

Mass of earth M_E=5.972\times 10^{24}kg

So mass of mars M_m=5.972\times\times 0.11 \times 10^{24}=0.657\times 10^{24}kg

Volume of mars V=\frac{4}{3}\pi R^3=\frac{4}{3}\times 3.14\times (6.9\times 10^6)^3=1375.357\times 10^{18}m^3

So density of mars d_{mars}=\frac{mass}{volume}=\frac{0.657\times 10^{24}}{1375.357\times 10^{18}}=477.69kg/m^3

Volume of earth  V=\frac{4}{3}\pi R^3=\frac{4}{3}\times 3.14\times (1.3\times 10^7)^3=9.198\times 10^{21}m^3

So density of earth d_{E}=\frac{mass}{volume}=\frac{5.972\times 10^{24}}{9.198\times 10^{21}}=649.271kg/m^3

(A) So the ratio of mean density \frac{d_{mars}}{d_E}=\frac{477.69}{649.27}=0.735

(B) Value of g on mars

g is given by g=\frac{GM}{R^2}=\frac{6.67\times 10^{-11}\times0.657\times 10^{24}}{(6.9\times 10^6)^2}=0.920m/sec^2

(c) Escape velocity is given by

v=\sqrt{\frac{2GM}{R}}=\sqrt{\frac{2\times 6.67\times 10^{-11}\times 0.657\times 10^{24}}{6.9\times 10^6}}=3.563\times 10^4m/sec

5 0
4 years ago
Read 2 more answers
A +12 μC charge and -8 μC charge are 4 cm apart. Find the magnitude and direction of the E-field at the point midway between t
Natasha_Volkova [10]

Answer:

Explanation:

Given

Charge of first Particle q_1=+12\ \mu C

Charge of second Particle q_2=-8\ \mu C

distance between them d=4\ cm

k=9\times 10^{9}

magnetic field due to first charge at mid-way between two charged particles is

E_1=\frac{kq_1}{r^2}

r=\frac{d}{2}=\frac{4}{2}=2\ cm

E_1=\frac{9\times 10^9\times 12\times 10^{-6}}{(2\times 10^{-2})^2}

E_1=27\times 10^7\ N/C (away from it)

Electric field due to q_2=-8\ \mu C

E_2=\frac{kq_2}{r^2}

E_2=-\frac{9\times 10^9\times 8\times 10^{-6}}{(2\times 10^{-2})^2}

E_2=-18\times 10^7\ N/C(towards it)

E_{net}=E_1+E_2

E_{net}=9\times 10^7\ N/C(away from first charge)        

8 0
3 years ago
In carbon dioxide (CO2), there are two oxygen atoms for each carbon atom. Each oxygen atom forms a double bond with carbon, so t
Anton [14]

ANSWER: d) 8

EXPLANATION: Two sets of two shared electrons (4 electrons total shared) = one set of a double covalent bond.

Therefore, 8 electrons total shared = two sets of double covalent bonds

5 0
3 years ago
uppose two train cars are moving toward one another, the first with a mass of 150,000 kg and a velocity of 0.300 m/s; the second
kondaur [170]

The value was determined to be 0.122 m/s. The velocity of a body or object determines its direction of motion. Speed is a scalar quantity in its most fundamental form.

Velocity is essentially a vector quantity. It is the rate of change in distance. The initial speed of the first train, which has a mass of 150,000 kg, is 0.3 m/s. The second train has an initial speed of -0.120 m/s and a mass of 110,000 kg.

Let v represent the post-collision speed of the connected mass.

Utilize the idea of momentum.

The speed of the trains is constant both before and after a collision.

150.000 + 110.000v 45.000 - 13200 = 260.000 v 31800 = 260.000 v v = 0.122 m/s 150000 x 0.3 - 110000 x 0.120

After colliding, they move at a speed of 0.122 m/s towards the direction of the right.

Learn more about velocity here-

brainly.com/question/18084516

#SPJ4

7 0
1 year ago
Other questions:
  • A man is riding his 4-wheeler at 60 km/hr. If he is riding it constantly at
    13·1 answer
  • The development of sperm cells
    13·2 answers
  • SO WASUPP... i havent been one in a whileeeeee
    8·2 answers
  • What is the magnitude of the detected sound frequency shift from 170 Hz during the projectile flight described in the passage?
    9·1 answer
  • I believe that our solar system formed by the same process as star formation. A huge cloud of dust and gas collapsed and condens
    8·1 answer
  • You have two lens A and B of focal length +50cm and -50cm respectively. The nature and power of the lenses respectively isa. Con
    10·1 answer
  • The learning about Universe is<br> called ________ ...​
    14·2 answers
  • Artists can create emphasis in a competition using
    12·1 answer
  • if your oven uses a 220.0 volt line and draws a maximum 8.00 A current what is the resistance of the oven when it is fully heate
    15·1 answer
  • The escape velocity of a bullet from the surface of planet Y is 1695.0 m/s. Calculate the escape velocity from the surface of th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!