You want to leave a 15% tip on a meal that cost $15.77.
First, convert the 15% to an actual number that can be used in a calculation. For percents,this is always done by simply dividing the percent (in this case 15%) by 100%.So, the conversational term "15%" becomes 15% / 100% = 0.15 in terms of a real mathematical number.
Second, you need to find out what 15% of your $15.77 meal cost is.This is always done by multiplying 0.15 by $15.77, or
0.15 x $15.77=$2.37.
So, the amount of tip you are going to leave is $2.37.
This makes the total cost of your meal (to write on your charge slip or other payment)
$15.77 + $2.37 = $18.14
$18.14 is your answer
Step-by-step explanation:
<h3>Appropriate Question :-</h3>
Find the limit
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)

Given expression is
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
On substituting directly x = 1, we get,


which is indeterminant form.
Consider again,
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D)
can be rewritten as
![\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%203x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20%7Bx%7D%5E%7B2%7D%20-%202x%20-%20x%20%2B%202%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28%20x%28x%20-%202%29%20-%201%28x%20-%202%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%28x%20-%201%29%7D-%5Cdfrac%7B1%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%7B%28x%20-%202%29%7D%5E%7B2%7D%20-%201%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%202%20-%201%29%28x%20-%202%20%2B%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%28x%20-%201%29%7D%7Bx%28x%20-%202%29%20%5C%3A%20%28x%20-%201%29%29%7D%5Cright%5D)
![\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%3D%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7B%20%28x%20-%203%29%7D%7Bx%28x%20-%202%29%7D%5Cright%5D)



Hence,
![\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}](https://tex.z-dn.net/?f=%5Crm%5Cimplies%20%5C%3A%5Cboxed%7B%20%5Crm%7B%20%5C%3A%5Crm%20%5C%3A%20%5Csf%20%7B%5Cdisplaystyle%7B%5Clim_%7Bx%5Cto%201%7D%7D%7D%20%5C%3A%20%5Cleft%5B%5Cdfrac%7Bx-2%7D%7Bx%5E2-x%7D-%5Cdfrac%7B1%7D%7Bx%5E3-3x%5E2%2B2x%7D%5Cright%5D%20%3D%202%20%5C%3A%20%7D%7D)

To solve this problem you must apply the proccedure shown below:
1. You have the following points given in the problem above:
A<span>(-2,3), B(9,3), C(5,6) and D(2,6)
2. When you plot them, you obtain the figure shown in the graph attached.
3. Therefore, as you can see,
the answer is: the figure is a trapezoid, which is define as a quadrilateral with two parallel sides.</span>
X=30.4-2y
(step by step) :
You can use a calculator for this if you have the graphing kind (I use a Ti-84) and when plugging the equation in, the answers should be b, d, and e