Answer:
<em>− 2sin(b) / cos(2b)</em>
Step-by-step explanation:
DIFFERENTIATE W.R.T. B is a different method entirely
We simply add together the numerators and set with 2cos
then keep this number and add to sinb and square it.
then repeat initial 2 + cosb ^2 but instead of multiplying its add.
Then set the whole division to -sin (2b) squared then +1
<em> − 2cos(b)(3(sin(b))^2+(cos(b))^2) / −(sin(2b)) ^2 +1 </em>
It takes 6 seconds for it to hit the ground.
0 = -5x²+20x+60
We can solve this by factoring. First factor out the GCF, -5:
0 = -5(x²-4x-12)
Now we want factors of -12 that sum to -4. -6(2) = -12 an -6+2 = -4:
0 = -5(x-6)(x+2)
Using the zero product property, we know that either x-6=0 or x+2=0; this gives us the answers x=6 or x=-2. Since we cannot have negative time, x=6.
Answer by JKismyhusbandbae: expression 2 and expression 1
Look at the four expressions. Simplify any expressions that can be simplified to see which two are equivalent.
8v × 30v = ( 8 × 30) × ( v × v) = 
Since expression 2 can be simplified to expression 1, they are equivalent.
Answer:
The answer is A.
Step-by-step explanation:
You have to multiply by converting the second fraction into upside down :




