Answer:
0 N, 3.49 m/s
Explanation:
Draw a free body diagram for the bucket at the top of the swing. There are two forces acting on the bucket: weight and tension, both downwards.
If we take the sum of the forces in the radial direction, where towards the center is positive:
∑F = ma
W + T = m v² / r
The higher the velocity that Rony swings the bucket, the more tension there will be. The slowest he can swing it is when the tension is 0.
W = m v² / r
mg = m v² / r
g = v² / r
v = √(gr)
Given that r = 1.24 m:
v = √(9.8 m/s² × 1.24 m)
v = 3.49 m/s
Answer:
Acceleration, 
Explanation:
It is given that,
Initial velocity of the car, u = 10 m/s (in right)
Final velocity of the car, v = -5 m/s (in left)
Time taken, t = 10 s
Let a is the acceleration of the car. It can be calculated using the equation of kinematics. The equation is as :



So, the acceleration of the car is
. Hence, this is the required solution.
10km/10min is a legitimate speed. So is meters/sec, km/hour (kph), etc.
Kph is very common for vehicles:
10 km/10 min (60 min/hr) = 60 kph
A) 3 x 10 ^ 8
b) 3 x 10 ^ 5
c) 3.2 x 10 ^ 7
d) 9.6 x 10 ^ 15 m
e) 9.6 x 10 ^ 17 cm
The weight changes but the mass will stay the same.