I have no idea
sorry
good luck thooooo!!
In light of this, V=V 0 loge (r/r 0 ) Field E= dr dV =V 0(r0r) eE= r mV2 alternatively, reV0r0=rmV2. V=(m eV 0 r 0 ) \ s1 / 2mV=(m e V 0 r 0 ) 1/2 = constant mvr= 2 nh, also known as Bohr's quantum condition or Hermitian matrix.
Show that the eigenfunctions for the Hermitian matrix in review exercise 3a can be normalized and that they are orthogonal.
Demonstrate how the pair of degenerate eigenvalues for the Hermitian matrix in review exercise 3b can be made to have orthonormal eigenfunctions.
Under the given Hermitian matrix, "border conditions," solve the following second order linear differential equation: d2x/ dt2 + k2x(t) = 0 where x(t=0) = L and dx(t=0)/ dt = 0.
To know more about Hermitian click on the link:
brainly.com/question/14671266
#SPJ4
Ke= 1/2 x m x v^2
Ke= 1/2 x 2.1 x 30^2
Energy = 945 J
The current through all the resistors will add up to 10A