Answer:

Step-by-step explanation:
Given
--- scale factor
Required [missing from the question]:
The ratio of width of the model to the original
From the question, we understand that the scale factor is: 2 : 15
The ratio of the width of the model to the original equals the given scale factor i.e.

T 1 2 3 4
B 3 6 9 12
This is linear relationships B=3*T (it can be also called directly proportional)
CF=EC=DC
2CF=CD
CD = 20 in.
The answer is: 3.
_________________
In the table, the relation (x, y) is not a function is the "missing value" of "x" is: 3.
_______________________________________
Explanation: We are given that the ordered pair: "(3,10)" exists. In other words, when x = 3, y =10.
______________________________________
The "missing value" refers to the "empty box" in the table shown (in the attached screenshot). The "empty box" shows a "y-coordinate" of "20"; but a "missing" corresponding "x-coordinate".
____________________________________
The problem asks:
_________________
In the table, the relation (x, y) is not a function is the "missing value" of "x" is: ____?
___________________
The answer is: 3.
_______________________
We know the answer is "3"; because we know that "3" already has 1 (one) corresponding y-coordinate.
By definition, a "function" cannot have ANY "x-coordinates" that have more than one "corresponding y-coordinate". As such:
_______________________________________
In the table, the relation (x, y) is not a function is the "missing value" of "x" is:
____________
3.
____________
Additional information:
____________
When examining an equation on an actual graph, we can use what is called the "vertical line test". That is, one can take a pencil and vertically go through the "y-axis", or even examine it visually, to see if there are any "x-values" that have more than one corresponding "y-coordinate".
If no, then it "passes" the "vertical line test" and is a "function".
If not, then it does NOT pass the "vertical line test" and is NOT a function.
__________________________________________