Answer:
H=310
Step-by-step explanation:
This problem is a great systems of equations problem--you have two different variables: song size and number of songs.
Let's call the number of standard version downloads (S) and the high quality downloads (H).
You can make two statements:
For number of songs downloaded: S + H = 910
For download size: 2.8(S) + 4.4(H) = 3044.
S will be the same number in both equations and H will be the same number in both equations, so to find S, we can rearrange the first statement to H = 910 - S, then substitute or plug in (910 - S) wherever you see an H in the second equation so that you have only S's in your equation. Should look like this:
2.8(S) + 4.4(910 - S) = 3044
2.8S + 4004 - 4.4S = 3044
-1.6S = -960
s = 600
Your question only asks for the standard version downloads, but to help you out in future Systems situations-
You can also solve for H once you have S by plugging it into either of your equations like this:
600 + H = 910
-600
Hope this helps!
Answer:
Step-by-step explanation:
Count pairs (a, b) whose sum of squares is N (a^2 + b^2 = N)
Given a number N, the task is to count all ‘a’ and ‘b’ that satisfy the condition a^2 + b^2 = N.
Note:- (a, b) and (b, a) are to be considered as two different pairs and (a, a) is also valid and to be considered only one time.
Examples:
Input: N = 10
Output: 2
1^2 + 3^2 = 9
3^2 + 1^2 = 9
Input: N = 8
Output: 1
2^2 + 2^2 = 8
Answer:
9:5
ratios are just putting the numbers next to each other with ':' in the middle
Step-by-step explanation:
Options :
A. The initial number of bacteria is 7.
B. The initial of bacteria decreases at a rate of 93% each day.
C. The number of bacteria increases at a rate of 7% each day.
D. The number of bacteria at the end of one day is 360.
Answer:
C. The number of bacteria increases at a rate of 7% each day.
Step-by-step explanation:
Given the function :
f(x)=360(1.07)^x ; Number of bacteria in sample at the end of x days :
The function above represents an exponential growth function :
With the general form ; Ab^x
Where A = initial amount ;
b = growth rate
x = time
For the function :
A = initial amount of bacteria = 360
b = growth rate = (1 + r) = 1.07
If ; (1 + r) = 1.07 ; we can solve for r to obtain the daily growth rate ;
1 + r = 1.07
r = 1.07 - 1
r = 0.07
r as a percentage ;
0.07 * 100% = 7%
30 divided by 12 will give you the percentage 40% , or c