1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
13

Compare and contrast the different forms of energy that are represented below:

Engineering
1 answer:
Kitty [74]3 years ago
8 0

Explanation:

1) Wind energy is generated through a wind turbine. When wind passes through the blades of wind mill, the blades of the wind mill tend to rotate. Due to the spinning of the rotor across the turbine, the kinetic energy from the wind is converted to electrical energy

2) Incase of wind energy, the consumption gets higher when there is more wind and would be zero incase of no movement of blades.

Incase of hydroelectric power, the generation is rather stable and consumption depends on the usage of power from the consumers

Incase of gasoline generator, the generation is also stable subject to availability of gasoline and consumption again depends on the usage of power from the consumers

3) Pros of Hydroelectric power

Cost of electricity generation is less

Can produce green energy

Produce mass volume of electricity

Cons of Hydroelectric power

Requires massive initial investement

Can be installed on certain demographical area

You might be interested in
At a retirement party, a coworker described terry as dedicated
denis23 [38]

Answer:

At a retirement party, a coworker described Terry as dedicated, hardworking, and dependable. He also said that Terry was a great leader, knew the computer system, and kept the company's finances in order

8 0
3 years ago
Quản trị học là gì ? ý nghĩa của quản trị học với thực tế xã hội
Dmitrij [34]

Answer:

I can't understand your language

4 0
3 years ago
What is one of the most common ways workers get hurt around machines
-BARSIC- [3]

Answer:

if their body parts stuck in a machine,if machine expl

Explanation:

ode.

4 0
2 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
The velocity profile for a thin film of a Newtonian fluid that is confined between the plate and a fixed surface is defined by u
zimovet [89]

Answer:

F = 0.0022N

Explanation:

Given:

Surface area (A) = 4,000mm² = 0.004m²

Viscosity = µ = 0.55 N.s/m²

u = (5y-0.5y²) mm/s

Assume y = 4

Computation:

F/A = µ(du/dy)

F = µA(du/dy)

F = µA[(d/dy)(5y-0.5y²)]

F = (0.55)(0.004)[(5-1(4))]

F = 0.0022N

8 0
2 years ago
Other questions:
  • g Consider a thin opaque, horizontal plate with an electrical heater on its backside. The front end is exposed to ambient air th
    11·1 answer
  • The emissivity of galvanized steel sheet, a common roofing material, is ε = 0.13 at temperatures around 300 K, while its absorpt
    7·1 answer
  • In a heat-treating process, a 1-kg metal part, initially at 1075 K, is quenched in a closed tank containing 100 kg of water, ini
    10·1 answer
  • How can goal setting help with academic performance?
    13·1 answer
  • What is the reading of this Dial Caliper?
    9·1 answer
  • Which of the following devices is a simple machine?
    11·2 answers
  • The first step of the Engineering Design Process is to select the
    5·1 answer
  • Can someone tell me what car, year, and model this is please
    15·2 answers
  • What is the correct procedure for mounting the m240 on the m122a1 tripod after the pintle is attached to the receiver?
    7·1 answer
  • Technician A says that the definition of torque is how far the crankshaft twists in degrees.Technician B says that torque can re
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!