1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Monica [59]
2 years ago
6

A 1020 Cold-Drawn steel shaft is to transmit 20 hp while rotating at 1750 rpm. Calculate the transmitted torque in lbs. in. Igno

re the effect of friction.If the shaft in Q2 was made of ASTM 30 cast iron, what would be the factor of safety
Engineering
1 answer:
velikii [3]2 years ago
4 0

Answer:

Question 1 A 1020 Cold-Drawn steel shaft is to transmit 20 hp while rotating at 1750 rpm. Calculate the transmitted torque in lbs. in. Ignore the effect of friction. Answer with three decimal points. 60.024 Question 2 Based on the maximum-shear-stress theory, determine the minimum diameter in inches for the shaft in Q1 to provide a safety factor of 3. Assume Sy = 57 Kpsi. Answer with three decimal points. 0.728 Question 3 If the shaft in Q2 was made of ASTM 30 cast iron, what would be the factor of safety? Assume Sut = 31 Kpsi, Suc = 109 Kpsi 0 2.1 O 2.0 O 2.5 0 2.4 2.3 O 2.2

Explanation:

hope it helps

You might be interested in
The inlet and exhaust flow processes are not included in the analysis of the Otto cycle. How do these processes affect the Otto
lara31 [8.8K]

Answer:

Suction and exhaust processes do not affect the performance of Otto cycle.

Explanation:

Step1

Inlet and exhaust flow processes are not including in the Otto cycle because the effect and nature of both the process are same in opposite direction.

Step2

Inlet process or the suction process is the process of suction of working fluid inside the cylinder. The suction process is the constant pressure process. The exhaust process is the process of exhaust out at constant pressure.

Step3

The suction and exhaust process have same work and heat in opposite direction. So, net effect of suction and exhaust processes cancels out. The suction and exhaust processes are shown below in P-V diagram of Otto cycle:

Process 0-1 is suction process and process 1-0 is exhaust process.

7 0
3 years ago
Resistance to impact is an example of a(n)
Anika [276]

Answer:

Mechanical property

Explanation:

MECHANICAL PROPERTIES can be defined as the ability of a metal or material to remain undamaged after different type of forces has been applied or used on them because forces or loads are often applied to metal, material or physical properties which is why MECHANICAL PROPERTIES enables us to know the strength , toughness as well as the hardness of metal and the way this metal perform or react when different forces are applied on them.

Lastly any metal, material or physical properties that has the strength , hardness and resistance to withstand or remain unaffected despite the loads or forces use on them is an example of MECHANICAL PROPERTIES.

Therefore Resistance to impact is an example of a(n) MECHANICAL PROPERTIES.

8 0
3 years ago
Determine the velocity of the 13-kgkg block BB in 4 ss . Express your answer to three significant figures and include the approp
Anvisha [2.4K]

Answer:

The question has some details missing : The 35-kg block A is released from rest. Determine the velocity of the 13-kgkg block BB in 4 ss . Express your answer to three significant figures and include the appropriate units. Enter positive value if the velocity is upward and negative value if the velocity is downward.

Explanation:

The detailed steps and appropriate calculation is as shown in the attached file.

6 0
3 years ago
A particle is emitted from a smoke stack with diameter of 0.05 mm. In order to determine how far downstream it travels it is imp
Nikolay [14]

Answer: downward velocity = 6.9×10^-4 cm/s

Explanation: Given that the

Diameter of the smoke = 0.05 mm = 0.05/1000 m = 5 × 10^-5 m

Where radius r = 2.5 × 10^-5 m

Density = 1200 kg/m^3

Area of a sphere = 4πr^2

A = 4 × π× (2.5 × 10^-5)^2

A = 7.8 × 10^-9 m^2

Volume V = 4/3πr^3

V = 4/3 × π × (2.5 × 10^-5)^3

V = 6.5 × 10^-14 m^3

Since density = mass/ volume

Make mass the subject of formula

Mass = density × volume

Mass = 1200 × 6.5 × 10^-14

Mass M = 7.9 × 10^-11 kg

Using the formula

V = sqrt( 2Mg/ pCA)

Where

g = 9.81 m/s^2

M = mass = 7.9 × 10^-11 kg

p = density = 1200 kg/m3

C = drag coefficient = 24

A = area = 7.8 × 10^-9m^2

V = terminal velocity

Substitute all the parameters into the formula

V = sqrt[( 2 × 7.9×10^-11 × 9.8)/(1200 × 24 × 7.8×10^-9)]

V = sqrt[ 1.54 × 10^-9/2.25×10-4]

V = 6.9×10^-6 m/s

V = 6.9 × 10^-4 cm/s

6 0
3 years ago
An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces
Allushta [10]

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

3 0
3 years ago
Other questions:
  • suppose a wheel with a 15 inch diameter is used to turn a water valve stem with a radius of .95 inches. What is the Mechanical a
    15·1 answer
  • The minimum safe working distance from exposed electrical conductors
    13·1 answer
  • When you arrive at an intersection with a stop sign in your direction, if there is no marked stop
    14·2 answers
  • A spherical tank for storing gas under pressure is 25 m in diameter and is made of steel 15 mm thick. The yield point of the mat
    5·2 answers
  • What do you mean by searching?​
    8·1 answer
  • Parallel circuits???
    9·1 answer
  • In c the square root of a number N can be approximated by repeated calculation using the formula NG = 0.5(LG + N/LG) where NG st
    14·1 answer
  • How can statistical analysis of a dataset inform a design process
    11·1 answer
  • Please help on two I will give brainiest​
    13·2 answers
  • Fill in the blank with the correct response.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!