1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
3 years ago
10

Water is the working fluid in an ideal Rankine cycle. The condenser pressure is 8 kPa, and saturated vapor enters the turbine at

(a) 18 MPa and (b) 4 MPa. The net power output of the cycle is 100 MW.
Determine for each case a) the mass flow rate of steam, in kg/h, b) the heat transfer rates for the working fluid passing through the boiler and condenser, each in kW, and c) the thermal efficiency.
Engineering
1 answer:
sergeinik [125]3 years ago
6 0

Explanation:

The obtained data from water properties tables are:

Point 1 (condenser exit) @ 8 KPa, saturated fluid

h_{f} = 173.358 \\h_{fg} = 2402.522

Point 2 (Pump exit) @ 18 MPa, saturated fluid & @ 4 MPa, saturated fluid

h_{2a} =  489.752\\h_{2b} =  313.2

Point 3 (Boiler exit) @ 18 MPa, saturated steam & @ 4 MPa, saturated steam

h_{3a} = 2701.26 \\s_{3a} = 7.1656\\h_{3b} = 2634.14\\s_{3b} = 7.6876

Point 4 (Turbine exit) @ 8 KPa, mixed fluid

x_{a} = 0.8608\\h_{4a} = 2241.448938\\x_{b} = 0.9291\\h_{4b} = 2405.54119

Calculate mass flow rates

Part a) @ 18 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3a}  - h_{4a}) - (h_{2a}  - h_{f})}\\\\= \frac{100*10^ 3}{(2701.26  - 2241.448938 ) - (489.752  - 173.358)}\\\\= 697.2671076 \frac{kg}{s} = 2510161.587 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3a} -  h_{2a})\\Q_{in} = (697.2671076)*(2701.26-489.752)\\\\Q_{in} = 1542011.787 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4a} -  h_{f})\\Q_{out} = (697.2671076)*(2241.448938-173.358)\\\\Q_{out} = 1442011.787 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.06485

Part b) @ 4 MPa

mass flow

\frac{100*10^6 }{w_{T} - w_{P}} = \frac{100*10^3 }{(h_{3b}  - h_{4b}) - (h_{2b}  - h_{f})}\\\\= \frac{100*10^ 3}{(2634.14  - 2405.54119 ) - (313.12  - 173.358)}\\\\= 1125 \frac{kg}{s} = 4052374.235 \frac{kg}{hr}

Heat transfer rate through boiler

Q_{in}  = mass flow * (h_{3b} -  h_{2b})\\Q_{in} = (1125.65951)*(2634.14-313.12)\\\\Q_{in} = 2612678.236 W

Heat transfer rate through condenser

Q_{out}  = mass flow * (h_{4b} -  h_{f})\\Q_{out} = (1125)*(2405.54119-173.358)\\\\Q_{out} = 2511206.089 W

Thermal Efficiency

n = \frac{W_{net}  }{Q_{in} } = \frac{100*10^3}{1542011.787}  \\\\n = 0.038275

You might be interested in
Is santa real or nah is santa real or nah
Elena L [17]

Answer:

nah

Explanation:

3 0
3 years ago
Read 2 more answers
Compared to 15 mph on a dry road, about how much longer will it take for
Marysya12 [62]

Answer:

8 to 10 times

Explanation:

For dry road

u= 15 mph        ( 1 mph = 0.44 m/s)

u= 6.7 m/s

Let take coefficient of friction( μ) of dry road is 0.7

So the de acceleration a = μ g

a= 0.7 x 10  m/s ²                         ( g=10 m/s ²)

a= 7 m/s ²

We know that

v= u - a t

Final speed ,v=0

0 = 6.7 - 7 x t

t= 0.95 s

For snow road

μ = 0.4

de acceleration a = μ g

a = 0.4 x 10 = 4 m/s ²

u= 30 mph= 13.41 m/s

v= u - a t

Final speed ,v=0

0 = 30 - 4 x t'

t'=7.5 s

t'=7.8 t

We can say that it will take 8 to 10 times more time as compare to dry road for stopping the vehicle.

8 to 10 times

7 0
3 years ago
Read 2 more answers
PythonA group of statisticians at a local college has asked you to create a set of functionsthat compute the median and mode of
skelet666 [1.2K]

Answer:

  1. def median(l):
  2.    if(len(l) == 0):
  3.       return 0
  4.    else:
  5.        l.sort()
  6.        if(len(l)%2 == 0):
  7.            index = int(len(l)/2)
  8.            mid = (l[index-1] + l[index]) / 2
  9.        else:
  10.            mid = l[len(l)//2]  
  11.        return mid  
  12. def mode(l):
  13.    if(len(l)==0):
  14.        return 0
  15.    mode = max(set(l), key=l.count)
  16.    return mode  
  17. def mean(l):
  18.    if(len(l)==0):
  19.        return 0
  20.    sum = 0
  21.    for x in l:
  22.        sum += x
  23.    mean = sum / len(l)
  24.    return mean
  25. lst = [5, 7, 10, 11, 12, 12, 13, 15, 25, 30, 45, 61]
  26. print(mean(lst))
  27. print(median(lst))
  28. print(mode(lst))

Explanation:

Firstly, we create a median function (Line 1). This function will check if the the length of list is zero and also if it is an even number. If the length is zero (empty list), it return zero (Line 2-3). If it is an even number, it will calculate the median by summing up two middle index values and divide them by two (Line 6-8). Or if the length is an odd, it will simply take the middle index value and return it as output (Line 9-10).

In mode function, after checking the length of list, we use the max function to estimate the maximum count of the item in list (Line 17) and use it as mode.

In mean function,  after checking the length of list,  we create a sum variable and then use a loop to add the item of list to sum (Line 23-25). After the loop, divide sum by the length of list to get the mean (Line 26).

In the main program, we test the three functions using a sample list and we shall get

20.5

12.5

12

3 0
3 years ago
If a car sits out in the sun every day for a long time can light from the sun damage the car paint
Reika [66]

Answer:

i think yes it could make the color go lighter

Explanation:

6 0
3 years ago
Read 2 more answers
Technician A says that a defective crankshaft position sensor can cause a no spark condition technician B says that a faulty ign
Aliun [14]
Both tech distributor ignition
5 0
3 years ago
Other questions:
  • A PMOS device with VT P = −1.2 V has a drain current iD = 0.5 mA when vSG = 3 V and vSD = 5 V. Calculate the drain current when:
    12·1 answer
  • What is the one change that golden expects to see in public transportation?
    12·1 answer
  • 5. What are the 3 basic types of electrical circuits?
    12·1 answer
  • Refrigerant 134a enters a horizontal pipe operating at steady state at 40oC, 300 kPaand a velocity of 40 m/s. At the exit, the t
    13·1 answer
  • A kernel-level thread wishes to acquire a mutex lock declared as global in the process. True or False: the function call used be
    6·1 answer
  • Give five examples of
    14·1 answer
  • Test if a number grade is an A (greater than or equal to 90). If so, print "Great!". Hint: Grades may be decimals. Sample Run En
    15·1 answer
  • A steam power plant with a power output of 230 MW consumes coal at a rate of 60 tons/h. If the heating value of the coal is 30,0
    5·1 answer
  • Three bars each made of different materials are connected together and placed between two walls when the temperature is 12 oC. D
    9·1 answer
  • 9. What power tool incorporates a set of dies and punches to cut new
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!