The RDA for iodine in adults is 150 micrograms
To meet this, one must consume:
150 / 0.7645
= 196.2 micrograms of potassium iodide per day.
Answer:
46 g
Explanation:
The balanced equation of the reaction between O and NO is
2 NO + O₂ ⇔ 2 NO₂
Now, you need to find the limiting reagent. Find the moles of each reactant and divide the moles by the coefficient in the equation.
NO: (80 g)/(30.006 g/mol) = 2.666 mol
(2.666 mol)/2 = 1.333
O₂: (16 g)/(31.998 g/mol) = 0.500 mol
(0.500 mol)/1 = 0.500 mol
Since O₂ is smaller, this is the limiting reagent.
The amount of NO₂ produced will depend on the limiting reagent. You need to look at the equation to determine the ratio. For every mole of O₂ reacted, 2 moles of NO₂ are produced.
To find grams of NO₂ produced, multiply moles of O₂ by the ratio of NO₂ to O₂. Then, convert moles of NO₂ to find grams.
0.500 mol O₂ × (2 mol NO₂/1 mol O₂) = 1.000 mol NO₂
1.000 mol × 46.005 g/mol = 46.005 g
You will produce 46 g of NO₂.
Answer: D=4.35g/L
Explanation:
The formula for density is
. M is mass in grams and V is volume in liters.
Since we are give pressure and temperature, we can use the ideal gas law to find moles/volume. FInding moles/volume would give us the base for density. All we would have to do is convert moles to grams.
Ideal Gas Law: PV=nRT



Now that we have moles, we can use molar mass of chlorine gas to find grams.

With our grams, we can find our density.

We need correct significant figures so our density is:

The correct name for the hydrocarbon would be option 2. 2 - methyl - 2 - pentene.
Answer:
The person writes a coefficient of 2 in front of Fe2O3 but then writes a 4 for the number of iron (Fe) atoms. Explain this difference.
Explanation: