Answer:
5.702 mol K₂SO₄
General Formulas and Concepts:
<u>Atomic Structure</u>
- Reading a Periodic Table
- Compounds
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
[Given] 993.6 g K₂SO₄
[Solve] moles K₂SO₄
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of K: 39.10 g/mol
[PT] Molar Mass of S: 32.07 g/mol
[PT] Molar mass of O: 16.00 g/mol
Molar Mass of K₂SO₄: 2(39.10) + 32.07 + 4(16.00) = 174.27 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 4 sig figs.</em>
5.7015 mol K₂SO₄ ≈ 5.702 mol K₂SO₄
Answer:
The relative conjugate acids and bases are listed below:
CH3NH2 → CH3NH3+
H2SO3→ HSO3-
NH3→ NH4+
Explanation:
In a Brønsted-Lowry acid-base reaction, a conjugate acid is the species resulting from a base accepting a proton; likewise, a conjugate base is the species formed after an acid has donated a hydrogen atom (proton).
To this end:
- HSO3- is the conjugate acid of H2SO3 i.e sulfuric acid has lost a proton (H+)
- NH4+ is the conjugate acid of NH3 i.e the base ammonia has gained a proton (H+)
- OH- is the conjugate base of H20
- CH3NH3+ is the conjugate base of the base CH3NH2 methylamine
Answer:
Callie expect 600 molecules of CO2 to have been released as a waste during the same amount of time.
Explanation:
During cellular respiration 1 molecule of glucose undergoes oxidation to form 6 molecules of CO2 as a waste product.
According to the question callie determined that the germinating corn seed had utilized 100 molecules of glucose.
So 100 molecules of glucose will release 100×6=600 molecules of CO2 as a waste product.
When grapes become fermented, they turn into wine.
Change(A chemical reaction.)