23, 24, 25
23+24+27 equals 72
Answer:
the helix intersects the sphere at t=4 and t=(-4)
Step-by-step explanation:
for the helix r(t) = [ sin(t) , cos(t) , t ] then x=sin(t) , y=cos(t) and z=t
thus the helix intersect the sphere x² + y² + z² = 17 at
x² + y² + z² = 17
[sin(t)]²+[cos(t)]²+ t² = 17
1 + t² = 17
t² = 16
t = ±4
thus the helix intersects the sphere at t=4 and t=(-4)
Answer:
<h2>4(3a-6b-1)</h2>
Step-by-step explanation:
![4 [-2a - 6b + 5a - 1]\\\\Simplify\:\\-2a - 6b + 5a - 1 : 3a-6b-1\\\\=4\left(3a-6b-1\right)](https://tex.z-dn.net/?f=4%20%5B-2a%20-%206b%20%2B%205a%20-%201%5D%E2%80%8B%5C%5C%5C%5CSimplify%5C%3A%5C%5C-2a%20-%206b%20%2B%205a%20-%201%20%3A%203a-6b-1%5C%5C%5C%5C%3D4%5Cleft%283a-6b-1%5Cright%29)
I think the answer is solution
Answer:
Step-by-step explanation:
F(-4,-3) ; E (4 , -3)
distance of EF = 4+4 = 8 units
h = 6 units
b = EF = 8 units

F(-4,-3) ; D(1,3)
![FD = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}\\\\=\sqrt{-1-[-4])^{2}+(3-[-3])^{2}}\\\\=\sqrt{-1+4)^{2}+(3+3)^{2}}\\\\=\sqrt{3^{2}+6^{2}}\\\\=\sqrt{9+36}\\\\=\sqrt{45}\\\\=6.7 units\\\\](https://tex.z-dn.net/?f=FD%20%3D%20%5Csqrt%7B%28x_%7B2%7D-x_%7B1%7D%29%5E%7B2%7D%2B%28y_%7B2%7D-y_%7B1%7D%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B-1-%5B-4%5D%29%5E%7B2%7D%2B%283-%5B-3%5D%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B-1%2B4%29%5E%7B2%7D%2B%283%2B3%29%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B3%5E%7B2%7D%2B6%5E%7B2%7D%7D%5C%5C%5C%5C%3D%5Csqrt%7B9%2B36%7D%5C%5C%5C%5C%3D%5Csqrt%7B45%7D%5C%5C%5C%5C%3D6.7%20units%5C%5C%5C%5C)
D(1 , 3) ; E(4,-3)

Perimeter = FD + ED + EF
= 6.7 +6.7 + 8
= 21.4 units