1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
14

There will be 10 numbers stored contiguously in the computer at location x 7000 . Write a complete LC-3 program, starting at loc

ation x3000, that will find the location of the smallest number and swap its location with the number in location x7000. For example, Suppose the following numbers are stored at location x7000:
Computers and Technology
2 answers:
Artist 52 [7]3 years ago
7 0

Answer:

The LC-3 (Little Computer 3) is an ISA definition for a 16-bit computer. Its architecture includes physical memory mapped I/O via a keyboard and display; TRAPs to the operating system for handling service calls; conditional branches on N, Z, and P condition codes; a subroutine call/return mechanism; a minimal set of operation instructions (ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect, Base+offset, PC-relative, and an immediate mode for loading effective addresses). Programs written in LC-3 assembler execute out of a 65536 word memory space. All references to memory, from loading instructions to loading and storing register values, pass through the get Mem Adr() function. The hardware/software function of Project 5 is to translate virtual addresses to physical addresses in a restricted memory space. The following is the default, pass-through, MMU code for all memory references by the LC-3 simulator.

unsigned short int get Mem Adr(int va, int rwFlg)

{

unsigned short int pa;

// Warning: Use of system calls that can cause context switches may result in address translation failure

// You should only need to use gittid() once which has already been called for you below. No other syscalls

// are necessary.

TCB* tcb = get TCB();

int task RPT = tcb [gettid()].RPT;

pa = va;

// turn off virtual addressing for system RAM

if (va < 0x3000) return &memory[va];

return &memory[pa];

} // end get MemAdr

Simple OS, Tasks, and the LC-3 Simulator

We introduce into our simple-os a new task that is an lc3 Task. An lc3 Task is a running LC-3 simulator that executes an LC-3 program loaded into the LC-3 memory. The memory for the LC-3 simulator, however, is a single global array. This single global array for memory means that alllc3 Tasks created by the shell use the same memory for their programs. As all LC-3 programs start at address 0x3000 in LC-3, each task overwrites another tasks LC-3 program when the scheduler swaps task. The LC-3 simulator (lc3 Task) invokes the SWAP command every several LC-3 instruction cycles. This swap invocation means the scheduler is going to be swapping LC-3 tasks before the tasks actually complete execution so over writing another LC-3 task's memory in the LC-3 simulator is not a good thing.

You are going to implement virtual memory for the LC-3 simulator so up to 32 LC-3 tasks can be active in the LC-3 simulator memory without corrupting each others data. To implement the virtual memory, we have routed all accesses to LC-3 memory through a get Mem Adr function that is the MMU for the LC-3 simulator. In essence, we now have a single LC-3 simulator with a single unified global memory array yet we provide multi-tasking in the simulator for up to 32 LC-3 programs running in their own private address space using virtual memory.

We are implementing a two level page table for the virtual memory in this programming task. A two level table relies on referring to two page tables both indexed by separate page numbers to complete an address translation from a virtual to a physical address. The first table is referred to as the root page table or RPT for short. The root page table is a fixed static table that always resides in memory. There is exactly one RPT per LC-3 task. Always.

The memory layout for the LC=3 simulator including the system (kernel) area that is always resident and non-paged (i.e., no virtual address translation).

The two figures try to illustrate the situation. The lower figure below demonstrates the use of the two level page table. The RPT resident in non-virtual memory is first referenced to get the address of the second level user page table or (UPT) for short. The right figure in purple and green illustrates the memory layout more precisely. Anything below the address 0x3000 is considered non-virtual. The address space is not paged. The memory in the region 0x2400 through 0x3000 is reserved for the RPTs for up to thirty-two LC-3 tasks. These tables are again always present in memory and are not paged. Accessing any RPT does not require any type of address translation.

The addresses that reside above 0x3000 require an address translation. The memory area is in the virtual address space of the program. This virtual address space means that a UPT belonging to any given task is accessed using a virtual address. You must use the RPT in the system memory to keep track of the correct physical address for the UPT location. Once you have the physical address of the UPT you can complete the address translation by finding the data frame and combining it with the page offset to arrive at your final absolute physical address.

A Two-level page table for virtual memory management.

x7000 123F x7000 0042

x7001 6534 x7001 6534

x7002 300F x7002 300F

x7003 4005 after the program is run, memory x7003 4005

x7004 3F19

Zarrin [17]3 years ago
5 0

Answer:

Explanation:

LC-3 Processor:

The LC-3 (Little Computer 3) is an ISA definition for a 16-bit computer. Its architecture includes physical memory mapped I/O via a keyboard and display; TRAPs to the operating system for handling service calls; conditional branches on N, Z, and P condition codes; a subroutine call/return mechanism; a minimal set of operation instructions (ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect, Base+offset, PC-relative, and an immediate mode for loading effective addresses). Programs written in LC-3 assembler execute out of a 65536 word memory space. All references to memory, from loading instructions to loading and storing register values, pass through thegetMemAdr() function. The hardware/software function of Project 5 is to translate virtual addresses to physical addresses in a restricted memory space. The following is the default, pass-through, MMU code for all memory references by the LC-3 simulator.

Simple OS, Tasks, and the LC-3 Simulator

We introduce into our simple-os a new task that is an lc3Task. An lc3Task is a running LC-3 simulator that executes an LC-3 program loaded into the LC-3 memory. The memory for the LC-3 simulator, however, is a single global array. This single global array for memory means that alllc3Tasks created by the shell use the same memory for their programs. As all LC-3 programs start at address 0x3000 in LC-3, each task overwrites another tasks LC-3 program when the scheduler swaps task. The LC-3 simulator (lc3Task) invokes the SWAP command every several LC-3 instruction cycles. This swap invocation means the scheduler is going to be swapping LC-3 tasks before the tasks actually complete execution so over writing another LC-3 task's memory in the LC-3 simulator is not a good thing.

You are going to implement virtual memory for the LC-3 simulator so up to 32 LC-3 tasks can be active in the LC-3 simulator memory without corrupting each others data. To implement the virtual memory, we have routed all accesses to LC-3 memory through a getMemAdr function that is the MMU for the LC-3 simulator. In essence, we now have a single LC-3 simulator with a single unified global memory array yet we provide multi-tasking in the simulator for up to 32 LC-3 programs running in their own private address space using virtual memory.

We are implementing a two level page table for the virtual memory in this programming task. A two level table relies on referring to two page tables both indexed by separate page numbers to complete an address translation from a virtual to a physical address. The first table is referred to as the root page table or RPT for short. The root page table is a fixed static table that always resides in memory. There is exactly one RPT per LC-3 task. Always.

The memory layout for the LC=3 simulator including the system (kernel) area that is always resident and non-paged (i.e., no virtual address translation).

The two figures try to illustrate the situation. The lower figure below demonstrates the use of the two level page table. The RPT resident in non-virtual memory is first referenced to get the address of the second level user page table or (UPT) for short. The right figure in purple and green illustrates the memory layout more precisely. Anything below the address 0x3000 is considered non-virtual. The address space is not paged. The memory in the region 0x2400 through 0x3000 is reserved for the RPTs for up to thirty-two LC-3 tasks. These tables are again always present in memory and are not paged. Accessing any RPT does not require any type of address translation.

The addresses that reside above 0x3000 require an address translation. The memory area is in the virtual address space of the program. This virtual address space means that a UPT belonging to any given task is accessed using a virtual address. You must use the RPT in the system memory to keep track of the correct physical address for the UPT location. Once you have the physical address of the UPT you can complete the address translation by finding the data frame and combining it with the page offset to arrive at your final absolute physical address.

This model of having a portion of memory that is not part per se of the virtual address space is not all that unusual. In fact, the lower region of the address space can by thought of as system space where kernel data structures reside. As such, it can be accessed directly without the need for the address translation. Remember, however, that anything above 0x3000 must pass through address translation.

A Two-level page table for virtual memory management.

x7000 123F                                                                            x7000 0042

x7001 6534                                                                            x7001 6534

x7002 300F                                                                            x7002 300F

x7003 4005                after the program is run, memory x7003 4005

x7004 3F19                

You might be interested in
A man-in-the-middle attack or impersonation are likely to result in problems with
Ivan

Answer:

Data Confidentiality

Explanation:

A Man-In-The-Middle-Attack (MITM) is an attack when a hacker gets between a communicative situation and digitally eavesdrops.

6 0
3 years ago
I need help here thanks forever who helps
lubasha [3.4K]

Answer:

the horse, the man, and the cactus

Explanation:

The horse is running

The man got slung off the horse, so its in motion

The cactus is flying everywhere from the horse.

3 0
1 year ago
How would you describe the difference between a syntax error and a logic error?
Ugo [173]

Answer:

hii

Explanation

syntax error:  a syntax error is an error in the syntax of a sequence of characters or tokens that is intended to be written in compile-time. A program will not compile until all syntax errors are corrected.

logic error:  logic error is a bug in a program that causes it to operate incorrectly, but not to terminate abnormally. A logic error produces unintended or undesired output or other behaviour, although it may not immediately be recognized as such.

6 0
3 years ago
Read 2 more answers
In reference to operating systems, what is spooling? what does it stand for? chegg
blondinia [14]

Answer:

Spooling is a process in which data is temporarily held to be used and executed by a device, program or the system. Data is sent to and stored in memory or other volatile storage until the program or computer requests it for execution. "Spool" is technically an acronym for simultaneous peripheral operations online.

8 0
2 years ago
State and explain three importance of internet education​
Ne4ueva [31]

Answer:

It can improve the quality of education in many ways. It opens doorways to a wealth of information, knowledge and educational resources, increasing opportunities for learning in and beyond the classroom. Teachers use online materials to prepare lessons, and students to extend their range of learning

Explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • According to the author, there are five hedging strategies organizations can pursue. One of them is: Select one: a. commit with
    5·1 answer
  • Which of the following is not part of active listening?
    6·2 answers
  • As part of the systems engineering development team, use IDEF0 to develop a functional architecture. The functional architecture
    13·1 answer
  • How would you define the rule of thirds?
    11·1 answer
  • What is an Apple Pen?
    5·2 answers
  • Define the following BASIC terms:<br> 1. Keywords<br> 2. Constants<br> 3.Variables
    8·1 answer
  • A collection of computers, printers, routers, switches, and other devices
    15·1 answer
  • Write a program that first reads in the name of an input file and then reads the input file using the file.readlines() method. T
    11·1 answer
  • Does anyone know 7.1.3: Firework karel?
    5·1 answer
  • Types of digital divide ​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!