1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
3 years ago
14

There will be 10 numbers stored contiguously in the computer at location x 7000 . Write a complete LC-3 program, starting at loc

ation x3000, that will find the location of the smallest number and swap its location with the number in location x7000. For example, Suppose the following numbers are stored at location x7000:
Computers and Technology
2 answers:
Artist 52 [7]3 years ago
7 0

Answer:

The LC-3 (Little Computer 3) is an ISA definition for a 16-bit computer. Its architecture includes physical memory mapped I/O via a keyboard and display; TRAPs to the operating system for handling service calls; conditional branches on N, Z, and P condition codes; a subroutine call/return mechanism; a minimal set of operation instructions (ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect, Base+offset, PC-relative, and an immediate mode for loading effective addresses). Programs written in LC-3 assembler execute out of a 65536 word memory space. All references to memory, from loading instructions to loading and storing register values, pass through the get Mem Adr() function. The hardware/software function of Project 5 is to translate virtual addresses to physical addresses in a restricted memory space. The following is the default, pass-through, MMU code for all memory references by the LC-3 simulator.

unsigned short int get Mem Adr(int va, int rwFlg)

{

unsigned short int pa;

// Warning: Use of system calls that can cause context switches may result in address translation failure

// You should only need to use gittid() once which has already been called for you below. No other syscalls

// are necessary.

TCB* tcb = get TCB();

int task RPT = tcb [gettid()].RPT;

pa = va;

// turn off virtual addressing for system RAM

if (va < 0x3000) return &memory[va];

return &memory[pa];

} // end get MemAdr

Simple OS, Tasks, and the LC-3 Simulator

We introduce into our simple-os a new task that is an lc3 Task. An lc3 Task is a running LC-3 simulator that executes an LC-3 program loaded into the LC-3 memory. The memory for the LC-3 simulator, however, is a single global array. This single global array for memory means that alllc3 Tasks created by the shell use the same memory for their programs. As all LC-3 programs start at address 0x3000 in LC-3, each task overwrites another tasks LC-3 program when the scheduler swaps task. The LC-3 simulator (lc3 Task) invokes the SWAP command every several LC-3 instruction cycles. This swap invocation means the scheduler is going to be swapping LC-3 tasks before the tasks actually complete execution so over writing another LC-3 task's memory in the LC-3 simulator is not a good thing.

You are going to implement virtual memory for the LC-3 simulator so up to 32 LC-3 tasks can be active in the LC-3 simulator memory without corrupting each others data. To implement the virtual memory, we have routed all accesses to LC-3 memory through a get Mem Adr function that is the MMU for the LC-3 simulator. In essence, we now have a single LC-3 simulator with a single unified global memory array yet we provide multi-tasking in the simulator for up to 32 LC-3 programs running in their own private address space using virtual memory.

We are implementing a two level page table for the virtual memory in this programming task. A two level table relies on referring to two page tables both indexed by separate page numbers to complete an address translation from a virtual to a physical address. The first table is referred to as the root page table or RPT for short. The root page table is a fixed static table that always resides in memory. There is exactly one RPT per LC-3 task. Always.

The memory layout for the LC=3 simulator including the system (kernel) area that is always resident and non-paged (i.e., no virtual address translation).

The two figures try to illustrate the situation. The lower figure below demonstrates the use of the two level page table. The RPT resident in non-virtual memory is first referenced to get the address of the second level user page table or (UPT) for short. The right figure in purple and green illustrates the memory layout more precisely. Anything below the address 0x3000 is considered non-virtual. The address space is not paged. The memory in the region 0x2400 through 0x3000 is reserved for the RPTs for up to thirty-two LC-3 tasks. These tables are again always present in memory and are not paged. Accessing any RPT does not require any type of address translation.

The addresses that reside above 0x3000 require an address translation. The memory area is in the virtual address space of the program. This virtual address space means that a UPT belonging to any given task is accessed using a virtual address. You must use the RPT in the system memory to keep track of the correct physical address for the UPT location. Once you have the physical address of the UPT you can complete the address translation by finding the data frame and combining it with the page offset to arrive at your final absolute physical address.

A Two-level page table for virtual memory management.

x7000 123F x7000 0042

x7001 6534 x7001 6534

x7002 300F x7002 300F

x7003 4005 after the program is run, memory x7003 4005

x7004 3F19

Zarrin [17]3 years ago
5 0

Answer:

Explanation:

LC-3 Processor:

The LC-3 (Little Computer 3) is an ISA definition for a 16-bit computer. Its architecture includes physical memory mapped I/O via a keyboard and display; TRAPs to the operating system for handling service calls; conditional branches on N, Z, and P condition codes; a subroutine call/return mechanism; a minimal set of operation instructions (ADD, AND, and NOT); and various addressing modes for loads and stores (direct, indirect, Base+offset, PC-relative, and an immediate mode for loading effective addresses). Programs written in LC-3 assembler execute out of a 65536 word memory space. All references to memory, from loading instructions to loading and storing register values, pass through thegetMemAdr() function. The hardware/software function of Project 5 is to translate virtual addresses to physical addresses in a restricted memory space. The following is the default, pass-through, MMU code for all memory references by the LC-3 simulator.

Simple OS, Tasks, and the LC-3 Simulator

We introduce into our simple-os a new task that is an lc3Task. An lc3Task is a running LC-3 simulator that executes an LC-3 program loaded into the LC-3 memory. The memory for the LC-3 simulator, however, is a single global array. This single global array for memory means that alllc3Tasks created by the shell use the same memory for their programs. As all LC-3 programs start at address 0x3000 in LC-3, each task overwrites another tasks LC-3 program when the scheduler swaps task. The LC-3 simulator (lc3Task) invokes the SWAP command every several LC-3 instruction cycles. This swap invocation means the scheduler is going to be swapping LC-3 tasks before the tasks actually complete execution so over writing another LC-3 task's memory in the LC-3 simulator is not a good thing.

You are going to implement virtual memory for the LC-3 simulator so up to 32 LC-3 tasks can be active in the LC-3 simulator memory without corrupting each others data. To implement the virtual memory, we have routed all accesses to LC-3 memory through a getMemAdr function that is the MMU for the LC-3 simulator. In essence, we now have a single LC-3 simulator with a single unified global memory array yet we provide multi-tasking in the simulator for up to 32 LC-3 programs running in their own private address space using virtual memory.

We are implementing a two level page table for the virtual memory in this programming task. A two level table relies on referring to two page tables both indexed by separate page numbers to complete an address translation from a virtual to a physical address. The first table is referred to as the root page table or RPT for short. The root page table is a fixed static table that always resides in memory. There is exactly one RPT per LC-3 task. Always.

The memory layout for the LC=3 simulator including the system (kernel) area that is always resident and non-paged (i.e., no virtual address translation).

The two figures try to illustrate the situation. The lower figure below demonstrates the use of the two level page table. The RPT resident in non-virtual memory is first referenced to get the address of the second level user page table or (UPT) for short. The right figure in purple and green illustrates the memory layout more precisely. Anything below the address 0x3000 is considered non-virtual. The address space is not paged. The memory in the region 0x2400 through 0x3000 is reserved for the RPTs for up to thirty-two LC-3 tasks. These tables are again always present in memory and are not paged. Accessing any RPT does not require any type of address translation.

The addresses that reside above 0x3000 require an address translation. The memory area is in the virtual address space of the program. This virtual address space means that a UPT belonging to any given task is accessed using a virtual address. You must use the RPT in the system memory to keep track of the correct physical address for the UPT location. Once you have the physical address of the UPT you can complete the address translation by finding the data frame and combining it with the page offset to arrive at your final absolute physical address.

This model of having a portion of memory that is not part per se of the virtual address space is not all that unusual. In fact, the lower region of the address space can by thought of as system space where kernel data structures reside. As such, it can be accessed directly without the need for the address translation. Remember, however, that anything above 0x3000 must pass through address translation.

A Two-level page table for virtual memory management.

x7000 123F                                                                            x7000 0042

x7001 6534                                                                            x7001 6534

x7002 300F                                                                            x7002 300F

x7003 4005                after the program is run, memory x7003 4005

x7004 3F19                

You might be interested in
True or false An electronic form uses input fields in which the user can enter data from their own computer and then transmit t
miskamm [114]

Answer:

The answer to this question is given below in the explanation section.

Explanation:

An electronic form uses input fields in which the user can enter data from their own computer and then transmit the form back to the company - (True)

Yes, it is true, because an electronic form that contains input fields which is used to collect data from the user. The input fields in the electronic form are based on the requirement of the organization about what they want to collect from their user.

For example, when you signup on google account, google company wants to know about your authentication. So the user enters the data in input fields such as first name, last name, phone number etc. When the user clicks on the submit or signup button, all these input values are then transmitted back to the company (google).

7 0
3 years ago
How can I make [ print(3 * x) ] into a functional python code?
CaHeK987 [17]

If you're programming in python, you simply have to assign a value to x and then use the print function. For instance,

x = 3

print(3 * x)

9 will be the output. I hope this helps!

5 0
3 years ago
A car with a 20-gallon gas tank averages 23.5 miles per gallon when driven in town and 28.9 miles per gallon when driven on the
katovenus [111]
Highway: 
<span>cout << "The car can drive " << 20*26.8 << " miles on the highway." << endl; </span>
<span>Town: </span>
<span>cout << "The car can drive " << 20*21.5 << " miles in the town." << endl;</span>
5 0
3 years ago
What is heaven backwards?
sweet-ann [11.9K]
It is Nevaeh backwards hope that helps! :3 and feel free to pm me if you have anymore questions! :3
5 0
3 years ago
Read 2 more answers
A document repository is down when you attempt to access it. which isa principle is being violated?
Tju [1.3M]
When a document repository is down when you attempt to access it, the ISA principle Authentication is being violated. The authentication method is done during the log on phase and is performed by the ISA server which requests certificate. <span>The client then needs to send the appropriate client certificate to the server in order to be authenticated and to have access to the document.</span>
3 0
3 years ago
Other questions:
  • Failure to verify information can lead to?
    10·1 answer
  • 3. What are the first steps that you should take if you are unable to get onto the Internet? (1 point)
    15·1 answer
  • The ability to anticipate and determine upcoming driving hazards and conditions are adversely affected
    14·1 answer
  • How long does it take to be placed in a class on flvs?
    14·1 answer
  • Using this tool to help you to visualize your slides and develop your content
    13·1 answer
  • BUURTAIS
    7·1 answer
  • Design a class named Person and its two subclasses named Student and Employee. Make Faculty and Staff subclasses of Employee. A
    13·1 answer
  • Read the following scenario. How might Sarah correct successfully complete her task?
    6·1 answer
  • Where to store <br> ammunition
    5·1 answer
  • Why womt this code work????
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!