100. A centimeter is a 100th of a meter.
Answer:
T = 0.607 seconds
Explanation:
Given:
Mass, M = 1.50 × 10⁻² kg
Radius, R = 5.50 × 10⁻² m
Now,
the time period in terms of moment of inertia is given as:
.....................1
where, T is the time period
g is the acceleration due to gravity
I is the moment of inertia
Now,
Moment of inertia, I is given as:

on substituting the moment of inertia in the equation 1, we get

or

on substituting the valeus, we get

or
T = 0.607 seconds
Hence, the time period is 0.607 seconds
D.) Entropy
Entropy is the measure of disorder in the universe.
If you are cold and you rub your hands together then that friction can create warmth. Useful
If you're sliding down a staircase railing and your hands are on the raiking then the friction may burn your hands a little. Not useful<span />
Answer:
1 / i + 1 / o = 1 / f thin lens equations
i = o f / (o - f) rearranging
Lens 1: object = 30 cm f = 15.2 cm
i1 = 30 * 15.2 / (30 - 15.2) = 30.8 cm
o2 = 40.2 - 30/8 = 9.4 cm distance of image 1 from lens 2
i2 = 9.4 * 15.2 / (9.4 - 15.2) = - 24.6 cm
The final image is 24.6 cm to the left of lens 2
The first image is inverted
The second image is erect (as seen from the first image)
So the final image is inverted
M = m1 * m2 = (-30.8 / 30) * (24.6 / 9.4) = -2.69